电子与自动控制

基于航路耦合容量的协同多航路资源分配

展开
  • 南京航空航天大学 民航学院, 江苏 南京 210016
刘方勤(1981- ) 男,博士研究生。主要研究方向:空域资源评估与分配。 Tel: 025-84896301 E-mail: liuliuqin2003@yahoo.com.cn 胡明华(1962- ) 男,教授,博士生导师。主要研究方向:空域规划与评估,空中交通管理。 Tel: 025-84896650 E-mail: minghuahu@263.net张颖(1978- ) 女,讲师。主要研究方向:空中交通流量管理。 Tel: 025-84896301

收稿日期: 2010-07-01

  修回日期: 2010-10-09

  网络出版日期: 2011-04-25

基金资助

国家"863"计划重点项目(20060AA12A105);国家空管科研课题(GKG200802006)

Collaborative Multiple En-route Airspace Resource Rationing Based on En-route Capacity Under Coupling Constraints

Expand
  • College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2010-07-01

  Revised date: 2010-10-09

  Online published: 2011-04-25

摘要

针对中国当前航路空域拥挤日益严重的问题,分3个步骤进行解决:第1步,对空域管制单元之间存在的交通流耦合因素进行分析,建立基于空域管制单元耦合因素的航路容量模型;第2步,为反映不同类型航班对计划到达时间变动范围的不同接受程度,定义了航班的延误成本函数和改航成本函数;第3步,在上述两步的基础上,为充分利用可行的航路空域资源和降低航班总延误成本,建立了整合改航策略和等待策略的协同多航路资源分配的0-1整数规划模型。另外,设计了以匈牙利算法为核心的启发式算法求解该优化模型。最后,使用京广航路的中南空管中心范围内的运行数据,对上述模型和算法进行了仿真运算。仿真结果表明:协同分配策略要比非协同分配策略在平均延误时间和平均延误成本方面分别下降30%和40%以上;在协同和非协同的两种策略下,利用本文模型优化后的运行结果均要比先计划先服务(FSFS)策略的运行结果在平均延误成本方面下降20%以上。

本文引用格式

刘方勤, 胡明华, 张颖 . 基于航路耦合容量的协同多航路资源分配[J]. 航空学报, 2011 , 32(4) : 672 -684 . DOI: CNKI:11-1929/V.20101213.1757.009

Abstract

This paper proposes three steps to solve the severe en-route airspace congestion in China. First, it analyzes the coupling effect caused by flight flows between neighbor airspace units, and then presents an en-route capacity model under coupling constraints between neighbor airspace units. Second, in order to reflect the different arrival time limitations of different flights,it defines the flight delay cost functions and rerouting cost functions. Third, the paper developes a 0-1 integer programming model for collaborative multiple en-route slot resource allocation which integrates the rerouting and delay tactics. In addition,a heuristic algorithm based on the Hungarian algorithm is developed to compute the model. Finally, a series of simulation experiments are performed using the operational data of the Beijing-Guangzhou route in the range of the Central South China Air Traffic Control Center. Numerical results show that the resource rationing under collaborative decision reduceds the average delay time of congested flights by more than 30% and it reduces the average delay cost of congested flights by more than 40% as compared with those under non collaborative decision making. The results also demonstrate that, under both collaborative and non collaborative strategy, the proposed models may reduce the average delay costs by more than 20% as compared with those under the first schedule first service (FSFS) rule.

参考文献

[1] 胡明华, 徐肖豪. 空中交通流量管理中的多元受限地面等待策略问题研究[J]. 航空学报, 1998, 19(1): 77-82. Hu Minghua, Xu Xiaohao. Multiple unit ground holding strategy problem research in air traffic flow management [J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(1): 77-82. (in Chinese)

[2] Michael O B, Hoffman R L, Dave Knorr, et al. Assessing the benefits of collaborative decision making in air traffic management//Proceedings of 3rd USA/EUROPE Air Traffic Management R&D Seminar. 1999.

[3] Lucio B, Odoni A D. New concepts and methods in air traffic management[M]. Berlin: Springer-Verlag, 2001: 17-30.

[4] Sherali H D, Staats R W, Trani A A. An airspace-planning and collaborative decision-making model: Part II cost model, data considerations, and computations [J]. Transportation Science, 2006, 40(2): 147-164.

[5] Ball M, Hoffman R, Vossen T. An analysis of resource rationing methods for collaborative decision making//Proceedings of ATM 2002. 2002.

[6] Wojcik L. Three principles of decision-making interactions in traffic flow management operations //Proceedings of 4th USA/EUROPE Air Traffic Management R&D Seminar. 2001.

[7] Vossen T, Ball M. Slot trading opportunities in collaborative ground delay programs[J]. Transportation Science, 2006, 40(1): 29-43.

[8] Hoffman R, Hall W, Ball M, et al. Collaborative decision making in air traffic flow management. NEXTOR Research Report RR-99-2, 1999.

[9] Hoffman R, Jakobovits R, Lewis T, et al. Resource allocation principles for airspace flow control//Proceedings of AIAA Guidance, Navigation & Control Conference. 2005.

[10] Krozel J, Jakobovits R, Penny S. An algorithmic approach for airspace flow programs [J]. Air Traffic Control Quarterly, 2006, 14(3): 203-230.

[11] Burke J. Implementing and evaluating alternative airspace rationing methods . Maryland: University of Maryland, 2002.

[12] Libby M, Buckner J, Brennan M. Operational concept for airspace flow programs (AFP) . Version 1, Washington, DC: FAA Air Traffic Organization, 2005.

[13] Mukherjee A, Grabbe S, Sridhar B. Arrival flight scheduling through departure delays and reroutes [J]. Air Traffic Control Quarterly, 2009, 17(3): 223-244.

[14] Liu F Q, Hu M H. Dynamic airspace capacity management under coupling constraints between airspaces//Proceedings of ICCM’09 International Conference on Computer Modeling and Simulation. 2009: 329-334.

[15] Tanner G. European air traffic management [M]. London: University of Westminster, 2007: 30-60, 97-120.

[16] 赵嶷飞. 管制区短期空中交通流量管理的时隙-航线分配模型及算法 [J]. 航空学报, 2009, 30(1): 121-126. Zhao Yifei. Time-route assignment model and algorithm for short-term area traffic flow management[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(1): 121-126. (in Chinese)
文章导航

/