流体力学与飞行力学

考虑喷流效应的机载导弹发射及气动干扰数值模拟

展开
  • 1. 西北工业大学 无人机特种技术国防科技重点实验室, 陕西 西安 710072;
    2. 西北工业大学 无人机研究所, 陕西 西安 710072
许晓平(1981- ) 男,博士研究生。主要研究方向:飞行器气动设计、计算流体力学、空气动力学等。 E-mail: xuran.npu@163.com 祝小平(1963-) 男,博士,教授,博士生导师。主要研究方向:无人机系统总体设计、控制与制导等。 Tel: 029-88453368 E-mail: zhouzhou@nwpu.edu.cn 周洲(1966- ) 女,博士,教授,博士生导师。主要研究方向:无人机总体、气动布局设计等。 E-mail: zhouzhou@nwpu.edu.cn 王军利(1979- ) 男,博士研究生。主要研究方向:飞行器设计、计算流体力学与气动弹性等。 E-mail: wjl503@126.com

收稿日期: 2010-07-26

  修回日期: 2010-10-29

  网络出版日期: 2011-04-25

基金资助

预研基金(513250101)

Numerical Simulation of Missile Launching and Aerodynamic Interference with Plume Effects

Expand
  • 1. National Key Laboratory of Science and Technology on UAV, Northwestern Polytechnical University, Xi’an 710072, China;
    2. Research Institute of Unmanned Aerial Vehicles, Northwestern Polytechnical University,Xi’an 710072, China

Received date: 2010-07-26

  Revised date: 2010-10-29

  Online published: 2011-04-25

摘要

研究比较了机载导弹发射时是否考虑导弹尾喷流情况下导弹运动特性及机-弹气动干扰影响。通过动态结构嵌套网格技术实现了导弹运动的模拟,结合刚体六自由度运动方程求解三维非定常Euler方程得到流场信息。导弹推力由发动机燃烧室喷流计算得到;当不考虑喷流效应时,推力通过直接在导弹尾部给定非定常作用力实现。应用此方法模拟了基于类"全球鹰"无人机(UAV)平台的导弹发射过程,获得了详细的包括导弹运动姿态、运动轨迹和机-弹干扰特性等在内的流场信息。分析结果表明,在投放过程中,导弹尾喷流极大地改变了挂架附近机翼的流场结构,对导弹运动特性和机-弹气动干扰特性影响显著。该研究结果对机载导弹发射设计具有参考价值。

本文引用格式

许晓平, 祝小平, 周洲, 王军利 . 考虑喷流效应的机载导弹发射及气动干扰数值模拟[J]. 航空学报, 2011 , 32(4) : 580 -588 . DOI: CNKI:11-1929/V.20101221.0956.057

Abstract

This paper simulates a missile launch process by the computational fluid dynamics (CFD) method, through which the aerodynamic interference and rules of missile movement with and without consideration of the plume field are studied. A moving chimera grid approach is used coupled with an unsteady Euler flow solver, and a 6-DOF model is fully integrated into the CFD solution procedure to capture the time-dependent interference between the stationary and moving boundaries. Two thruster models are developed to account for the influence of thruster rockets on the flowfield. One model applies an equivalent massflux at the rocket nozzle exit in order to simulate the rocket plume effects. For the second model, the thrust vector exerted by the rockets is attached to the missile body for the duration of the run. And the paper presents the results obtained for a time-accurate missile launching from the quasi-"Global Hawk" unmanned aerial vehicle (UAV) by the developed numerical methods. All major trends of the trajectory are captured, including the displacements, angular orientations, pressure coefficient distribution on the plane in the captive position, and force coefficients histories during separation, which are then used for comparison. The results show that the effect of the plume field is significant on the missile dynamic characteristics and aerodynamic interference. The simulations may provide a tool for design verification and risk mitigation for the missile launch procedure.

参考文献

[1] Meakin R L. Computations of the unsteady flow about a generic wing/pylon/finned-store configuration. AIAA-1992-4568, 1992.

[2] Coleman L A, Jolly B A, Chesser B L, Jr, et al. Numerical simulation of a store separation event from an F-15E aircraft. AIAA-1996-3385, 1996.

[3] 车竞, 唐硕, 谢长强. 空射导弹发射初始弹道数值仿真[J]. 空气动力学学报, 2006, 24(2): 205-208. Che Jing, Tang Shuo, Xie Changqiang. The initial trajectory numerical simulation of air launched missile[J]. Acta Aerodynamic Sinica, 2006, 24(2): 205-208. (in Chinese)

[4] 王正裕, 李孝伟. 基于动态嵌套网格技术的飞行器导弹发射的数值模拟[J]. 上海大学学报: 自然科学版, 2008, 14(2): 174-176. Wang Zhengyu, Li Xiaowei. Simulation of air launched missile based on moving chimera grid[J]. Journal of Shanghai University: Natural Science, 2008, 14(2): 174-176. (in Chinese)

[5] 沈琼, 余雄庆. 无人机机载导弹分离轨迹的数值仿真[J]. 弹箭与制导学报, 2009, 29(5): 99-102. Shen Qiong, Yu Xiongqing. Numerical simulation of trajectory of missile separated from UAV[J]. Journal of Projectiles, Rockets, Missile and Guidance, 2009, 29(5): 99-102. (in Chinese)

[6] 杨明智, 桂业伟, 刘刚, 等. 导弹投放分离的数值模拟[J]. 空气动力学学报, 2006, 24(2): 261-264. Yang Mingzhi, Gui Yewei, Liu Gang, et al. Numerical simulation of missile separation[J]. Acta Aerodynamic Sinica, 2006, 24(2): 261-264. (in Chinese)

[7] 傅德彬, 姜毅. 用动网格方法模拟导弹发射过程中的燃气射流流场[J]. 宇航学报, 2007, 28(2): 423-426. Fu Debin, Jiang Yi. Simulation of jet flow during missile launching with dynamic mesh[J]. Journal of Astronautics, 2007, 28(2): 423-426. (in Chinese)

[8] Lijewski L E, Suhs N E. Time-accurate computational fluid dynamics approach to transonic store separation tra-jectory prediction[J]. Journal of Aircraft, 1994, 31(4): 886-891.

[9] Tarhan E, Kavsaoglu M S. Parallel overset-grid Euler solution of generic wing pylon and finned store[J]. Journal of Aircraft, 2005, 42(5): 1337-1339.

[10] 韩忠华. 旋翼绕流的高效数值计算方法及主动流动控制研究. 西安: 西北工业大学, 2007. Han Zhonghua. Efficient method for simulation of viscous flows past helicopter rotors and active flow control.Xi’an: Northwestern Polytechnical University, 2007. (in Chinese)

[11] Landon R H. NACA 0012 oscillatory and transient pitching. Compendium of Unsteady Aerodynamic Measurements, AGARD-R-702, 1982.

[12] Murman S M, Aftosmis M J, Berger M J. Simulations of 6-DOF motion with a cartesian method. AIAA-2003-1246, 2003.

[13] Roger R P, Chan S C, Heisler R R. Aerodynamic coefficient differences between power-on and power-off for a maneuverable boosting missile. AIAA-2006-3865, 2006.

[14] Gleissl R, Deslandes R M. Simulation of missile plumes for aircraft store compatibility assessments. AIAA-2005-54, 2005.

[15] York B J, Sinha N, Dash S M, et al. Complete analysis of steady and transient missile aerodynamic-propulsive-plume flowfield interactions. AIAA-1992-3603, 1992.

[16] Hall L H, Parthasarathy V. Validation of an automated chimera 6-DOF methodology for multiple moving body problems. AIAA-1998-753, 1998.

[17] Ahmad J U, Shanks S P, Buning P G. Aerodynamics of powered missile separation from F/A-18 aircraft. AIAA-1993-766, 1993.

[18] 苗瑞生, 居贤铭. 火箭气体动力学[M]. 北京: 国防工业出版社, 1985: 302-311. Miao Ruisheng, Ju Xianming. Gas dynamics for rocket[M]. Beijing: National Defense Industry Press, 1985: 302-311. (in Chinese)
文章导航

/