电子与自动控制

多目标跟踪中自适应时间资源调度

展开
  • 1. 南京航空航天大学 信息科学与技术学院, 江苏 南京 210016;
    2. 江苏科技大学 电子信息学院, 江苏 镇江 212003
张贞凯(1982- ) 男,博士研究生,讲师。主要研究方向:目标跟踪、雷达射频隐身、雷达搜索等。 Tel: 025-84896490-12509 E-mail: zzk@nuaa.edu.cn 汪飞(1976- ) 男,博士,副教授。主要研究方向:谱估计、雷达射频隐身、目标散射中心提取等。 Tel: 025-84892430 E-mail: wangxiaoxian@nuaa.edu.cn周建江(1962- ) 男,博士,教授,博士生导师。主要研究方向:雷达射频隐身、目标特性识别等。 Tel: 025-84892838 E-mail: zjjee@nuaa.edu.cn

收稿日期: 2010-06-02

  修回日期: 2010-09-09

  网络出版日期: 2011-03-24

基金资助

总装预研基金(N0901-041);江苏省研究生培养创新工程 (CX10B_110Z,CX09B_081Z)

Adaptive Time Resource Scheduling for Multiple Target Tracking

Expand
  • 1. School of Information Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Department of Electronic Information, Jiangsu University of Science and Technology, Zhenjiang 212003, China

Received date: 2010-06-02

  Revised date: 2010-09-09

  Online published: 2011-03-24

摘要

为了提高雷达的工作效率,在改进交互多模型-概率数据关联(IMMPDA)跟踪算法的基础上,提出了基于灰色关联度和粒子群优化理论的自适应多目标跟踪的时间资源调度(ATRS)算法。首先对每个跟踪目标设置不同的期望跟踪精度;然后以灰色关联度作为资源管理模型中的度量函数和粒子群算法中的适应度函数,来衡量各种情况下预测跟踪精度与期望跟踪精度的差异性,并利用粒子群算法优化设计采样间隔和驻留时间。最后选取跟踪紧迫性最强的目标作为下一时刻跟踪的对象。仿真表明,所提算法在具有较好跟踪精度的前提下,有效节省了相控阵雷达的时间资源。

本文引用格式

张贞凯, 汪飞, 周建江, 刘伟强 . 多目标跟踪中自适应时间资源调度[J]. 航空学报, 2011 , 32(3) : 522 -530 . DOI: CNKI:11-1929/V.20101111.0909.009m

Abstract

In order to improve the efficiency of the radar, the interacting multiple models-probability data association (IMMPDA) is modified in foundation, and a novel adaptive time resource scheduling (ATRS) algorithm for multi-target tracking is proposed based on grey relational grade and particle swarm optimization. First, the IMMPDA algorithm of target tracking is improved. Then different tracking accuracy is configured according to different targets respectively. During the particle optimization for obtaining the best sampling period and dwell time, the grey relational grade between the desired and estimated tracking accuracies is supposed to be the measurement function in the resource management model and the fitness value in the optimization process. Finally, the algorithm selects the target with the utmost urgency of being tracked as the one that will be tracked. Experimental results show that the proposed ATRS algorithm not only has a better tracking accuracy, but also saves time resource for the phased-array radar.

参考文献

[1] Cohen S A. Adaptive variable update rate algorithm for tracking targets with a phase array radar [J]. IEE Proceedings of Radar & Signal Processing, 1986, 133 (3): 277-280. [2] Gilson W H. Minimum power requirements for tracking//Proceeding of IEEE International Radar Conference. 1990: 417-421. [3] van Keuk G, Blackman S S. On phased array radar tracking and parameter control[J]. IEEE Transactions on Aerospace and Electronic System, 1993, 29(1): 186-194. [4] 王峰, 张洪才, 潘泉. 相控阵雷达采样周期自适应策略研究[J]. 系统仿真学报, 2003, 15(9): 1230-1233. Wang Feng, Zhang Hongcai, Pan Quan. A study on adaptive sampling period of phased array radar[J]. Journal of System Simulation, 2003, 15(9): 1230-1233. (in Chinese) [5] 王峰, 詹晶晶, 潘泉, 等. 一种灵活的相控阵雷达采样周期自适应算法[J]. 系统工程与电子技术, 2003, 25(10): 1179-1182. Wang Feng, Zhan Jingjing, Pan Quan, et al. A flexible adaptive sampling period algorithm for phased array radars[J]. Systems Engineering and Electronics, 2003, 25(10): 1179-1182. (in Chinese) [6] Puranik S P, Tugnait J K. On adaptive sampling for multisensor tracking of a maneuvering target using IMM/PDA filtering//Proceedings of 2005 American Control Conference. 2005: 1263-1268. [7] 唐婷, 韩春林, 程婷,等. 一种基于自适应网格 IMM的自适应采样周期算法[J]. 系统工程与电子技术, 2008, 30(12): 2481-2484. Tang Ting, Han Chunlin, Cheng Ting, et al. Adaptive sampling period algorithm based on adaptive grid IMM[J]. Systems Engineering and Electronics, 2008, 30(12): 2481-2484. (in Chinese) [8] Zwaga J H, Driessen H. Tracking performance constrained MFR parameter control: applying constraints on prediction accuracy// Proceedings of the 8th International Conference of Information Fusion. 2005: 546-551. [9] Boers Y, Driessen H, Zwaga J. Adaptive MFR parameter control: fixed against variable probabilities of detection[J]. IEE Proceedings of Radar Sonar Navigation, 2006, 153(1): 2-6. [10] Lu J B, Hu W D, Yu W X. Adaptive beam sceduing for an agile beam radar in multitarget tracking //Proceedings of 2006 International Conference on Digital Object Identifier. 2006: 1-4. [11] 卢建斌, 胡卫东, 郁文贤. 基于协方差控制的相控阵雷达资源管理算法[J]. 电子学报, 2007, 35(3): 402-408. Lu Jianbin, Hu Weidong, Yu Wenxian. Resource management algorithm based on covariance control for phased array radars[J]. Acta Electronica Sinica, 2007, 35(3): 402-408. (in Chinese) [12] Deng J L. Control problems of grey system[J]. Systems and Control Letters, 1982(5): 288-294. [13] 邓聚龙, 灰色系统基本方法[M]. 武汉: 华中科技大学出版社,2004: 81-82. Deng Julong. The primary methods of grey system theroy[M]. Wuhan: Huazhong University of Science and Technology Press, 2004: 81-82. (in Chinese) [14] Kennedy J, Eberhart R. Particle swarm optimization// Proceedings of IEEE International Conference on Neural Networks. 1995, 4: 1942-1948. [15] Choi J W, Fang T H, Lee S B. IMMPDA filter via perception net//Proceedings of the 1999 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems. 1999: 267-272. [16] 潘泉,刘刚,戴冠中,等. 联合交互式多模型概率数据关联算法[J].航空学报, 1999, 20(3): 234-238. Pan Quan, Liu Gang, Dai Guanzhong, et al. Combined interacting multiple models probabilistic data association algorithm[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(3): 234-238. (in Chinese) [17] 刘先省,周林,杜晓玉.基于目标权重和信息增量的传感器管理方法[J]. 电子学报, 2005, 33(9): 1657-1683. Liu Xianxing, Zhou Lin, Du Xiaoyu. A method of Sensor management based on target priority and information gain[J].Acta Electronica Sinica, 2005, 33(9): 1657-1683. (in Chinese)
文章导航

/