电子与自动控制

基于势函数法的航天器自主姿态机动控制

展开
  • 哈尔滨工业大学 航天学院, 黑龙江 哈尔滨 150001
郭延宁(1985- ) 男,博士研究生。主要研究方向:航天器姿态确定与姿态机动控制,控制力矩陀螺奇异分析及操纵律设计。 E-mail: guoyn@hit.edu.cn 李传江(1978- ) 男,博士,副教授,硕士生导师。主要研究方向:航天器姿态控制,最优控制,非线性控制等。 Tel: 0451-86402726 E-mail: chuanjiangli@gmail.com 马广富(1963- ) 男,博士,教授,博士生导师。主要研究方向:航天器姿态控制,挠性航天器主动振动控制,最优控制,非线性控制等。 Tel: 0451-86402108 E-mail: magf@hit.edu.cn

收稿日期: 2010-05-31

  修回日期: 2010-06-24

  网络出版日期: 2011-03-24

基金资助

国家自然科学基金(60774062);哈尔滨工业大学优秀青年教师培养计划(HITQNJS.2008.006);哈尔滨市科技创新人 才研究专项资金(2010RFQXG029)

Spacecraft Autonomous Attitude Maneuver Control by Potential Function Method

Expand
  • School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

Received date: 2010-05-31

  Revised date: 2010-06-24

  Online published: 2011-03-24

摘要

主要研究存在禁止姿态的航天器自主姿态机动控制问题。首先,给出航天器的动力学和运动学模型,利用四元数描述航天器与机动姿态和禁止姿态的姿态偏差,用相应的欧拉转角描述不同姿态间的距离。为利用势函数完成禁止姿态回避,结合航天器的运动情况设计排斥势函数(RPF)存在条件后,根据禁止姿态最小允许夹角构造一种新的排斥势函数。接着,利用排斥及吸引势函数(APF)的共同作用得到虚拟指令角速度,利用反步法得到自主姿态机动控制器。此外,针对控制受限问题给出控制参数自适应规则,并设计回避势函数局部极小值情况的切换控制器。最后,通过对不同禁止姿态区域的数学仿真,验证了设计方法的有效性和通用性。

本文引用格式

郭延宁, 李传江, 马广富 . 基于势函数法的航天器自主姿态机动控制[J]. 航空学报, 2011 , 32(3) : 457 -464 . DOI: CNKI:11-1929/V.20101111.0915.033

Abstract

This article investigates the spacecraft autonomous attitude maneuver control in the presence of forbidden attitude. First, the dynamical and kinematic equations are introduced, in which a quaternion is adopted to represent the attitude deviation between the spacecraft attitude and maneuver or the forbidden attitude, with the corresponding Euler rotation angles describing the distance of various attitudes. Second, in order to avoid the forbidden attitude, the existence conditions for the repulsive potential function (RPF) are exploited by incorporating the spacecraft motions, and a novel RPF is proposed according to the minimum separation angle allowed for the forbidden attitude. The RPF as well as the attractive potential function (APF) are employed subsequently to derive a virtual angular velocity command. An autonomous attitude maneuver controller is obtained by means of backstepping. Meanwhile, some self-adaptive rules for the control parameters are developed to deal with control saturation. In addition, one switch controller is proposed to overcome the local minima of the potential function. Finally, numerical results for different forbidden attitude regions are presented to show the effectiveness and generality of the proposed method.

参考文献

[1] Hablani H B. Attitude commands avoiding bright objects and maintaining communication with ground station [J]. Journal of Guidance, Control, and Dynamics, 1999, 22(6): 759-767. [2] Singh G, Macala G, Wong E, et al. A constraint monitor algorithm for the Cassini spacecraft . AIAA-1997-3526, 1997. [3] Frazzoli E, Dahleh M A, Feron E. A randomized attitude slew planning algorithm for autonomous spacecraft . AIAA-2001-4155, 2001. [4] Kim Y, Mesbahi M. Quadratically constrained attitude control via semidefinite programming [J]. IEEE Transactions on Automatic Control, 2004, 49(5): 731-735. [5] Kim Y, Mesbahi M. On the constrained attitude control problem . AIAA-2004-5129, 2004. [6] 崔平远, 徐文明, 崔祜涛, 等. 基于单轴随机扩展算法的自主探测器大角度机动规划 [J]. 宇航学报, 2007, 28(2): 404-408. Cui Pingyuan, Xu Wenming, Cui Hutao, et al. A single axis randomized expanding algorithm for the large angle slew planning of autonomous spacecraft[J]. Journal of Astronautics, 2007, 28(2): 404-408. (in Chinese) [7] 仲维国, 崔平远, 崔祜涛. 航天器复杂约束姿态机动的自主规划 [J]. 航空学报, 2007, 28(5): 1091-1097. Zhong Weiguo, Cui Pingyuan, Cui Hutao. Autonomous attitude maneuver planning for spacecraft under complex constraints[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5): 1091-1097. (in Chinese) [8] 杨思亮, 徐世杰. 基于粒子群算法的航天器姿态机动路径规划 [J]. 北京航空航天大学学报, 2010, 36(1): 48-51. Yang Siliang, Xu Shijie. Spacecraft attitude maneuver planning based on particle swarm optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(1): 48-51. (in Chinese) [9] Geand S S, Cui Y J. New potential function for mobile robot path planning [J]. IEEE Transactions on Robotics and Automation, 2000, 16(10): 615-619. [10] Ge S S, Cui Y J. Dynamic motion planning for mobile robots using potential field method [J]. Autonomous Robots, 2002, 13(3): 207-222. [11] Yun X, Tan K C. A wall-following method for escaping local minima in potential field based motion planning //Proceedings of International Conference on Advanced Robotics. 1997: 421-426. [12] McInnes C R. Large angle slew maneuvers with autonomous sun vector avoidance [J]. Journal of Guidance, Control, and Dynamics, 1994, 17(4): 875-877. [13] Wisniewskia R, Kulczycki P. Slew maneuver control for spacecraft equipped with star camera and reaction wheels [J]. Control Engineering Practice, 2005, 13(3): 349-356. [14] Radice G, Casasco M. Time-varying potential function control for constrained attitude tracking //Proceedings of the 14th AAS/AIAA Spaceflight Mechanics Conference. 2004. [15] Ali I, Radice G. Autonomous attitude control using potential function method under control input saturation //International Astronautical Federation—59th International Astronautical Congress. 2008, 8: 5072-5077. [16] Ali I, Radice G, Kim J. Backstepping control design with actuator torque bound for spacecraft attitude maneuver [J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 254-258. [17] Avanzini1 G, Radice G, Ali I. Potential approach for constrained autonomous manoeuvres of a spacecraft equipped with a cluster of control moment gyroscopes [J]. Journal of Aerospace Engineering, 2009, 223(3): 285-296. [18] Kim K S, Kim Y. Robust backstepping control for slew maneuver using nonlinear tracking function[J]. IEEE Transaction on Control System Technology, 2003, 11(6): 822-829.
文章导航

/