航空学报 > 2023, Vol. 44 Issue (S2): 729306-729306   doi: 10.7527/S1000-6893.2023.29306

考虑冰层断裂与界面脱粘的电脉冲除冰仿真

黄永杰1,2, 倪章松1(), 潘捷1   

  1. 1.成都流体动力创新中心,成都 610010
    2.空天飞行空气动力科学与技术全国重点实验室,绵阳 621000
  • 收稿日期:2023-07-11 修回日期:2023-07-16 接受日期:2023-07-25 出版日期:2023-08-07 发布日期:2023-08-04
  • 通讯作者: 倪章松 E-mail:nzscczx@163.com
  • 基金资助:
    国家自然科学基金重点项目(12132019)

Simulation of electro-impulse de-icing considering ice fracture and interface debonding

Yongjie HUANG1,2, Zhangsong NI1(), Jie PAN1   

  1. 1.Chengdu Fluid Dynamics Innovation Center,Chengdu 610010,China
    2.National Key Laboratory of Aerodynamics Science and Technology for Aerospace Flight,Mianyang 621000,China
  • Received:2023-07-11 Revised:2023-07-16 Accepted:2023-07-25 Online:2023-08-07 Published:2023-08-04
  • Contact: Zhangsong NI E-mail:nzscczx@163.com
  • Supported by:
    National Natural Science Foundation of China(12132019)

摘要:

电脉冲除冰系统具备重量轻、能耗低、效率高等诸多优势,在飞机除冰领域应用前景广阔。基于损伤力学原理,考虑了界面脱粘、冰层断裂与裂纹扩展对冰脱落的影响机制,发展了一套电脉冲除冰有限元模型,对电脉冲除冰过程进行了瞬态动力学仿真。通过对仿真模型与实验结果进行比对分析,证实了该模型较传统模型具有更高的准确性和合理性,为电脉冲除冰系统设计提供了新的、更精确的仿真手段。此外,还对一系列影响冰脱落的关键参数进行了深入探讨,包括冰层断裂强度、断裂能、冰层与蒙皮之间的法向粘附强度以及剪切粘附强度等。研究表明,影响电脉冲除冰效果最显著的因素是冰层与蒙皮之间的界面剪切强度,这些发现有助于促进复合式防除冰系统的设计,从而实现更高的除冰效率。

关键词: 电脉冲除冰, 冰层断裂, 界面脱粘, 有限元模型, 断裂能

Abstract:

Electro-impulse de-icing systems offer numerous advantages, such as lightweight construction, low energy consumption, and high efficiency, which make them highly promising in the field of aircraft de-icing applications. Drawing on the principles of damage mechanics, this paper takes into account the effects of interface delamination, ice layer fracture, and crack propagation on ice removal mechanisms. A finite element model for electro-impulse de-icing is developed, and transient dynamic simulations of the electro-impulse de-icing process are conducted. By comparing the simulation model with experimental results, it is demonstrated that the proposed model provides more accurate and reasonable predictions than traditional models, offering a new, precise simulation approach for designing electro-impulse de-icing systems. Furthermore, the study delves deeply into a series of key parameters affecting ice removal, including ice layer fracture strength, fracture energy, normal adhesive strength at the ice/skin interface, and shear adhesive strength. The findings show that the most significant factor influencing electro-impulse de-icing efficiency is the shear strength at the ice/skin interface. These findings contribute to the design of composite anti-icing and de-icing systems, ultimately leading to higher de-icing efficiency.

Key words: electro-impulse de-icing, ice fracture, interface debonding, finite element model, fracture energy

中图分类号: