1 |
曾天翔. 飞机事故及其原因统计分析[J]. 航空标准化与质量, 1998(6): 37-43.
|
|
ZENG T X. Statistical analysis of aircraft accidents and their causes[J]. Aeronautic Standardization & Quality, 1998(6): 37-43 (in Chinese).
|
2 |
WEI Y, XU H J, XUE Y, et al. Quantitative assessment and visualization of flight risk induced by coupled multi-factor under icing conditions[J]. Chinese Journal of Aeronautics, 2020, 33(8): 2146-2161.
|
3 |
GORAJ Z. An overview of the deicing and anti-icing technologies with prospects for the future[C]∥Proceedings of the 24th international congress of the aeronautical sciences. Yokohama: Warsaw University of Technology, 2004: 1-22.
|
4 |
唐超, 谢文俊, 袁培毓, 等. 翼面前缘共形电热除冰功能结构开发与验证[J]. 航空学报, 2023, 44(12): 331-341.
|
|
TANG C, XIE W J, YUAN P Y, et al. Development and verification of a conformal electrothermal deicing functional structure for leading edge of airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 331-341 (in Chinese).
|
5 |
刘晓林, 朱彦曈, 王泽, 等. 飞行器仿生防冰涂层技术现状与趋势[J]. 航空学报, 2022, 43(10): 527331.
|
|
LIU X L, ZHU Y T, WANG Z, et al. Research progress and development trend of bio-inspired anti-icing coatings for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527331 (in Chinese).
|
6 |
POTAPCZUK M G. Aircraft icing research at NASA Glenn research center[J]. Journal of Aerospace Engineering, 2013, 26(2): 260-276.
|
7 |
李清英, 朱春玲, 白天. 电脉冲除冰系统除冰激励的简化与影响因素[J]. 航空学报, 2012, 33(8): 1384-1393.
|
|
LI Q Y, ZHU C L, BAI T. Simplification of de-icing excitation and influential factors of the electro-impulse de-icing system[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1384-1393 (in Chinese).
|
8 |
GUO F, CHANG S N. Design test of electro- impulse de-icing system of an aircraft[C]∥2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC). Piscataway: IEEE Press, 2011: 3918-3921.
|
9 |
董文俊, 张永杰, 赵宾宾. 飞机电脉冲除冰技术研究进展[J]. 山东工业技术, 2015(16): 185-186.
|
|
DONG W J, ZHANG Y J, ZHAO B B. Research progress of aircraft electrical pulse deicing technology[J]. Shandong Industrial Technology, 2015(16): 185-186 (in Chinese).
|
10 |
LI Q Y, ZHU C L, BAI T A. Numerical simulation and experimental verification of the electro-impulse de-icing system[C]∥Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. 2012.
|
11 |
ZUMWALT G, FRIEDBERG R. Designing an electro-impulse de-icing system[C]∥Proceedings of the 24th Aerospace Sciences Meeting. 1986.
|
12 |
AL-KHALIL K. Thermo-mechanical expulsive deicing system-TMEDS[C]∥Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. 2007.
|
13 |
景向嵘, 程盼, 罗振兵, 等. 电弧放电激励器破除冰特性及裂纹扩展规律[J]. 航空学报, 2022, 43(): 207-216.
|
|
JING X R, CHENG P, LUO Z B, et al. Ice breaking characteristics and crack propagation law of arc discharge plasma actuator[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(Sup 2): 207-216 (in Chinese).
|
14 |
KANDAGAL S B, VENKATRAMAN K. Piezo-actuated vibratory deicing of a flat plate[C]∥Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. 2005.
|
15 |
PALACIOS J L. Design, fabrication, and testing of an ultrasonic de-icing system for helicopter rotor blades[D]. Stadtkolich: The Pennsylvania State University, 2008.
|
16 |
KHATKHATE A, SCAVUZZO R, CHU M. A finite element study of the EIDI system[C]∥Proceedings of the 26th Aerospace Sciences Meeting. 1988.
|
17 |
LABEAS G N, DIAMANTAKOS I D, SUNARIC M M. Simulation of the electroimpulse de-icing process of aircraft wings[J]. Journal of Aircraft, 2006, 43(6): 1876-1885.
|
18 |
张永杰, 董文俊, 王斌团, 等. 电脉冲除冰仿真冰层松脱准则研究[J]. 计算机工程与应用, 2012, 48(3): 232-233, 245.
|
|
ZHANG Y J, DONG W J, WANG B T, et al. Study on de-icing criterion of electro-impulse de-icing simulation[J]. Computer Engineering and Applications, 2012, 48(3): 232-233, 245 (in Chinese).
|
19 |
崔哲. 脉冲参数对机翼电脉冲除冰效果影响的仿真研究[D]. 武汉: 华中科技大学, 2020: 50-86.
|
|
CUI Z. Simulation study on the influence of pulse parameters on the wing electrical pulse de-icing effect[D]. Wuhan: Huazhong University of Science and Technology, 2020: 50-86 (in Chinese).
|
20 |
王洋洋. 微功耗飞机电脉冲除冰系统理论与实验研究[D]. 重庆: 重庆大学, 2020: 34-74.
|
|
WANG Y Y. Theoretical and experimental research of the electro-impulse de-icing system for aircraft[D]. Chongqing: Chongqing University, 2020: 34-74 (in Chinese) .
|
21 |
HUANG Y J, YI X, LIU Q L, et al. Simulation of electro-impulse de-icing process based on an improved ice shedding criterion[C]∥China Aeronautical Science and Technology Youth Science Forum. Singapore: Springer, 2023: 623-634.
|
22 |
SONG Y, LI S F, ZHANG S. Peridynamic modeling and simulation of thermo-mechanical de-icing process with modified ice failure criterion[J]. Defence Technology, 2021, 17(1): 15-35.
|
23 |
SYSTèMES D. ABAQUS Documentation (Version 6.13)[EB/OL]. Providence, RI, 2013.
|
24 |
REICH A. Ice property/structure variations across the glaze/rime transition[C]∥Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. 1992.
|
25 |
ANDREWS E H, LOCKINGTON N A. The cohesive and adhesive strength of ice[J]. Journal of Materials Science, 1983, 18(5): 1455-1465.
|
26 |
SOMMERWERK H, LUPLOW T, HORST P. Numerical simulation and validation of electro-impulse de-icing on a leading edge structure[J]. Theoretical and Applied Fracture Mechanics, 2020, 105: 102392.
|
27 |
ZHANG Y J, LIANG K, LAN H, et al. Modelling electro-impulse de-icing process in leading edge structure and impact fatigue life prediction of rivet holes in critical areas[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 234(5): 1117-1131.
|
28 |
ENDRES M, SOMMERWERK H, MENDIG C, et al. Experimental study of two electro-mechanical de-icing systems applied on a wing section tested in an icing wind tunnel[J]. CEAS Aeronautical Journal, 2017, 8(3): 429-439.
|
29 |
GOODMAN D J, TABOR D. Fracture toughness of ice: a preliminary account of some new experiments[J]. Journal of Glaciology, 1978, 21(85): 651-660.
|
30 |
PERVIER M A, HAMMOND D W. Measurement of the fracture energy in mode I of atmospheric ice accreted on different materials using a blister test[J]. Engineering Fracture Mechanics, 2019, 214: 223-232.
|