Please wait a minute...
航空学报 > 2015, Vol. 36 Issue (7): 2166-2176   doi: 10.7527/S1000-6893.2015.0091
飞机尾涡系Rayleigh-Ludwieg不稳定性实验研究
鲍锋1, 刘锦生1, 朱睿1, 刘玥2
1. 厦门大学 物理与机电工程学院, 厦门 361005;
2. 华侨大学 厦门工学院, 厦门 361021
Experimental study on Rayleigh-Ludwieg instability of aircraft wake vortex
BAO Feng1, LIU Jinsheng1, ZHU Rui1, LIU Yue2
1. School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005, China;
2. Xiamen Institute of Technology, Huaqiao University, Xiamen 361021, China
下载:  PDF (10413KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

以飞机起降过程中主翼和尾翼产生反向涡系存在相互作用的事实为背景,设计了一套反向双漩涡发生装置。通过改变两涡的位置关系与初始涡强度比值,采用流动显示与粒子成像测速(PIV)技术,对涡系相交不稳定性的作用特性进行了研究。结果表明:小涡的引入改变了主涡原有运动轨迹,合理地引入小涡的位置与小涡的强度,对主涡能量的衰减有明显的促进作用,但它们之间不呈现明显的线性关系;涡空间运动轨迹的分析,对未来完善机场起降控制模型有一定借鉴意义;实验结果也为飞机整体设计提供了一定参考依据,在满足飞行力学的设计基础上,优化整体气动布局对降低飞机尾流强度有显著的影响。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲍锋
刘锦生
朱睿
刘玥
关键词:  飞机尾涡  Rayleigh-Ludwieg不稳定性  流动显示  粒子成像测速(PIV)  低雷诺数流动    
Abstract: 

Based on the fact that the main wing and tail would produce counter-rotating vortices in the process of taking-off and landing, a set of double vortex generators are designed. Under two different experimental conditions, in terms of changing the position and initial intensity ratio of the double vortex, the wake vortex development of the test mode is acquired, including flow visualizations and particle image velocimetry (PIV) technology. Research reveals that the introduction of a weaker vortex, with a proper position and initial intensity ratio, would change the main vortex original trajectory and promotes its dissipation. However, it does not present an obvious linear relationship between them. The analysis results of vortex trajectory could be used in improving the efficiency of taking-off and landing in airports, the experiments also provide a reference for the overall design of aircrafts: when the requirement for flight mechanics design is satisfied, optimizing the overall aerodynamic layout will have a significant effect on alleviating the intensity of aircraft wake.

Key words:  aircraft wake vortex    Rayleigh-Ludwieg instability    flow visualization    particle image velocimetry (PIV)    low Reynolds number flow
收稿日期:  2015-01-27      修回日期:  2015-03-30           出版日期:  2015-07-15      发布日期:  2015-04-01      期的出版日期:  2015-07-15
ZTFLH:  V211.76  
基金资助: 

国家自然科学基金 (11072206)

通讯作者:  鲍锋 男, 博士, 教授。主要研究方向: 实验流体力学, 水洞设计, 航空推进, 流动控制。 Tel: 0592-2184789 E-mail: fbao@xmu.edu.cn    E-mail:  fbao@xmu.edu.cn
作者简介:  刘锦生 男, 硕士研究生。主要研究方向: 实验流体力学, 数值模拟。 E-mail: 1184997667@qq.com
引用本文:    
鲍锋, 刘锦生, 朱睿, 刘玥. 飞机尾涡系Rayleigh-Ludwieg不稳定性实验研究[J]. 航空学报, 2015, 36(7): 2166-2176.
BAO Feng, LIU Jinsheng, ZHU Rui, LIU Yue. Experimental study on Rayleigh-Ludwieg instability of aircraft wake vortex. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(7): 2166-2176.
链接本文:  
http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2015.0091  或          http://hkxb.buaa.edu.cn/CN/Y2015/V36/I7/2166

[1] Luckner R, Höhne G, Fuhrmann M. Hazard criteria for wake vortex encounters during approach[J]. Aerospace Science and Technology, 2004, 8(8): 673-687.
[2] Perry R B, Hinton D A, Stuever R A. NASA wake vortex research for aircraft spacing, AIAA-1997-0057[R]. Reston: AIAA, 1997.
[3] Crouch J D. Instability and transient growth for two trailing vortex pairs, AIAA-1997-0062[R].Reston: AIAA, 1997.
[4] Gerz T, Holzpfel F, Darracq D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences, 2002, 38(3): 181-208.
[5] Crow S C. Stability theory for a pair of trailing vortices [J]. AIAA Journal, 1970, 8(12): 2172-2179.
[6] Brashears M R, Hallock J N. Aircraft wake vortex transport model[J]. Journal of Aircraft, 1974, 11(5): 265-272.
[7] Ciffone D L, Pedley B. Measured wake-vortex characteristics of aircraft in ground effect[J]. AIAA Journal, 1978, 16(2): 78-109.
[8] Greene G C. Wake vortex alleviation, AIAA-1981-0798 [R]. Reston: AIAA, 1981.
[9] Kamran R, Renaud R. Quantitative measurements of wake vortex motion in a water tunnel, AIAA-2001-0111[R]. Reston: AIAA, 2001.
[10] Fabre D, Jacquin L. Stability of a four-vortex aircraft wake model[J]. Physics of Fluids, 2000, 12(10): 2438-2443.
[11] Jacquin L, Molton P, Loiret P, et al. An experiment on jet-wake vortex interaction, AIAA-2007-4363[R]. Reston: AIAA, 2007.
[12] Huang S Q, Shen G X, Konrath R, et al. Experimental investigation of influence of jets on aircraft wake vortices[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5): 899-908 (in Chinese). 黄烁桥, 申功忻, Konrath Robert, 等. 喷流对飞机尾流涡影响的试验研究[J]. 航空学报, 2010, 31(5): 899-908.
[13] Lee T, Gerontakos P. Effect of winglet dihedral on a tip vortex[J]. Journal of Aircraft, 2006, 43(1): 117-124.
[14] Kauertz S, Neuwerth G. Excitation of instabilities in the wake of an airfoil by means of active winglets[J]. Aerospace Science and Technology, 2006, 10(7): 551-562.
[15] Rennich S C, Lele S K. Method for accelerating the destruction of aircraft wake vortices[J]. Journal of Aircraft, 1999, 36(2): 398-404.
[16] Bao F, Vollmers H, Mattner H. Experimental study on controlling wake vortex in water towing tank[C]//20th International Congress on Instrumentation in Aerospace Simulation Facilities. Piscataway, NJ: IEEE Press, 2003: 214- 223.
[17] Quackenbush T R, Boschitsch A H, Bilanin A J. Computational and experimental studies in multipair wake vortex instabilities, AIAA-2013-3190[R]. Reston: AIAA, 2013.
[18] Allen A, Breitsamter C. Experimental investigation of counter-rotating four vortex aircraft wake[J]. Aerospace Science and Technology, 2009, 13(2): 114-129.
[19] Liu Y, Wang J W, Liu Z R, et al. Experimental investigation of wake vortex in a water towing tank[C]//6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment. Xiamen: SPIE, 2012: 314-322.
[20] Liu Y, Zhang Z F, Yang Q, et al. Experimental investigation of counter-rotating two vortices in water towing tank[C]//2010 IEEE International Conference on Intelligent Computing and Intelligent Systems, 2010: 274-278.
[21] Liu Z R, Zhu R. Dual wingtips vortexes Rayleigh-Ludwieg instability experimental research[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 24-30 (in Chinese). 刘志荣, 朱睿. 双翼尖涡Rayleigh-Ludwieg 不稳定性实验研究[J]. 实验流体力学, 2013, 27(2): 24-30.
[22] Ortega J M, Bristol R L, Savas . Experimental study of the instability of unequal-strength counter-rotating vortex pairs[J]. Journal of Fluid Mechanics, 2003, 474: 35-84.
[23] Haverkamp S, Neuwerth G, Jacob D. Studies on the influence of outboard flaps on the vortex wake of a rectangular wing[J]. Aerospace Science and Technology, 2003, 7(5): 331-339.
[24] Haverkamp S, Neuwerth G, Jacob D. Active and passive vortex wake mitigation using control surfaces[J]. Aerospace Science and Technology, 2005, 9(1): 5-18.
[25] Babie B M, Nelson R C. An experimental investigation of bending wave instability modes in a generic four-vortex wake[J]. Physics of Fluids, 2010, 22: 077101-1-077101-15.
[26] He Y, Yang J W, Bao F. Wake vortex control using modified flaps[J]. Applied Mechanics and Materials, 2013, 365: 827-834.
[27] Bao F, Zhu R, Liu Z R, et al. Four-vortex system reconstruction and experimental study of its wake features[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1491-1499 (in Chinese). 鲍锋, 朱睿, 刘志荣, 等. 四涡系统构建及其特性的实验研究[J]. 航空学报, 2015, 36(5): 1491-1499.

[1] 张征宇, 王显圣, 黄叙辉, 周润, 茆骥. 高速复杂流动结构的视频测量[J]. 航空学报, 2017, 38(8): 120989-120989.
[2] 朱睿, 刘锦生, 刘志荣, 鲍锋. 新概念机翼尾流特性实验[J]. 航空学报, 2017, 38(4): 120250-120250.
[3] 鲍锋, 朱睿, 刘志荣, 何意. 四涡系统构建及其特性的实验研究[J]. 航空学报, 2015, 36(5): 1491-1499.
[4] 康伟, 刘磊, 徐敏, 雷鹏飞, 张家忠. 低雷诺数下翼面局部振动增升机理研究[J]. 航空学报, 2015, 36(11): 3557-3566.
[5] 王庶;米建春. 大湍流度对超低雷诺数下翼型受力及绕流的影响[J]. 航空学报, 2011, 32(1): 41-48.
[6] 安柏涛;王松涛;韩万金;王仲奇. 涡轮导向器几何与气动参数对通道涡影响的实验与数值研究[J]. 航空学报, 2004, 25(4): 348-351.
[7] 刘沛清;邵延峰;邓学蓥;马宇. 大迎角细长旋成体绕流结构演变过程实验研究[J]. 航空学报, 2003, 24(6): 503-506.
[8] 祝成民;忻鼎定;庄逢甘. 利用截面数据显示三维涡结构的新方法[J]. 航空学报, 2003, 24(3): 193-198.
[9] 马宝峰;刘沛清;邓学蓥. 大迎角下鸭翼涡与边条涡的干扰特性[J]. 航空学报, 2002, 23(6): 560-563.
[10] 王晋军;陈光. 沟槽面湍流边界层近壁区拟序结构实验研究[J]. 航空学报, 2001, 22(5): 400-405.
[11] 白鹏;周伟江;汪翼云. 三角翼大攻角分离流开缝吸气效应研究[J]. 航空学报, 1999, 20(5): 393-398.
[12] 洪金森. 超音速细长梯形翼背风面流型[J]. 航空学报, 1996, 17(5): 90-95.
[13] 王世芬;王宇;刘鹏. 高超音速后掠激波与边界层干扰流场特性[J]. 航空学报, 1993, 14(9): 449-454.
[14] 李克文;连淇祥. 湍流边界层中马蹄涡的实验研究[J]. 航空学报, 1993, 14(2): 102-105.
[15] 毛根旺. 二维激波斜壁问题的数值研究[J]. 航空学报, 1991, 12(9): 519-522.
[1] Liu Chuhui;Li Jiangxiong;Dong Huiyue;Wang Qing;Ke Yinglin. Finish Machining Condition Evaluation Technology for Aircraft Fuselage-wing Joints[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(6): 1272 -1279 .
[2] Guo Dilong;Kang Honglin;Ding Haihe;Wang Famin. Effects of Rolling Movement on the Aerodynamic Characteristics of Waverider Aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2008, 29(4): 829 -833 .
[3] Wu Qisong;Shi Hongzhu;Xing Mengdao;Bao Zheng. High Signal to Noise Ratio and High Resolution Wide Swath Imaging[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(5): 958 -967 .
[4] Xiao Po;Li Yuchun;Xu Liping. A METHOD FOR MEASURING UNSTEADY SEPARATION TURBULKNT FLOW USING SPLIT-FILM[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(12): 1438 -1444 .
[5] Li Yinghong;Liang Hua;Ma Qingyuan;Wu Yun;Song Huimin;Wu Wei. Experimental Investigation on Airfoil Suction Side Flow Separation by Pulse Plasma Aerodynamic Actuation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2008, 30(6): 1429 -1435 .
[6] WANG Guo-hong;MAO Shi-yi. PERFORMANCE ANALYSIS OF AN ESM GUIDING A 2D RADAR[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2002, 23(4): 298 -301 .
[7] ZHU Hong-yan;HAN Chong-zhao;HAN Hong;ZUO Dong-guang. Study on Approaches for Track Initiation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2004, 25(3): 284 -288 .
[8] ZHANG Xiao-fei;XU Da-zhuan. Wavelet Domain Adaptive Beamforming Algorithm[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2005, 26(1): 98 -102 .
[9] Xie Ruoze;Lu Zixing;Chen Chengjun;Zhang Fangju;Zhao Yabin. Measurement of Dynamic Compressive Behavior of Aluminum-alloy Foams by Polycarbonate SHPB System[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(8): 1435 -1439 .
[10] ZHANG Dan;ZHANG Wei-hong. Optimization of Thermal Stress and Deformation of the Casting During Solidification by Neural Network and Genetic Algorithm[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(4): 697 -702 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed