[1] Xie G. Principles of GPS and receiver desigin. Beijing: Publishing House of Electronics Industry, 2009: 72-74. (in Chinese) 谢钢. GPS原理与接收机设计. 北京: 电子工业出版社, 2009: 72-74.
[2] Teunissen P J G. The least-squares ambiguty decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy, 1995, 70(1-2): 65-82.
[3] Teunissen P J G, de Jonge P J. Performance of the LAMBDA method for fast GPS ambiguity resolution. Navigation Journal of the Insitute of Navigation, 1997, 44(3): 373-383.
[4] de Jonge P, Tiberius C. The LAMBDA method for integer ambiguity estimation: implementation aspects. Delft Geodetic Computing Centre LGR Series, 1996, 12: 1-49.
[5] Tang W M, Sun H X, Liu J N. Ambiguity resolution of single epoch single frequency data with baseline length constraint using LAMBDA algorithm. Geomatics and Information Science of Wuhan University, 2005, 30(5): 444-446. (in Chinese) 唐卫明, 孙红星, 刘经南. 附有基线长度约束的单频数据单历元LAMBDA方法整周模糊度确定. 武汉大学学报: 信息科学版, 2005, 30(5): 444-446.
[6] Wang X P, Cao L M. The theory, application and software realization of genetic algorithm. Xi’an: Xi’an Jiaotong University Press, 2002: 18-38, 73-74. (in Chinese) 王小平, 曹立明. 遗传算法——理论、应用与软件实现. 西安: 西安交通大学出版社, 2002: 18-38, 73-74.
[7] Lei Y J, Zhang S W, Li X W, et al. MATLAB genetic algorithm toolbox and application. Xi’an: Xidian University Press, 2005: 45-61, 107-142. (in Chinese) 雷英杰, 张善文, 李续武, 等. MATLAB遗传算法工具箱及应用. 西安: 西安电子科技大学出版社, 2005: 45-61, 107-142.
[8] Yang N, Zhang J, Tian W F. Application of genetic algorithm in DGPS integer ambiguity resolution. Journal of System Simulation, 2005, 17(8): 2025-2032. (in Chinese) 杨宁, 张静, 田蔚风. 遗传算法在DGPS动态整周模糊度解算中应用. 系统仿真学报, 2005, 17(8): 2025-2032.
[9] Zheng Q H, Zhang Y L. OTF ambiguity resolution based on genetic algorithm. Journal of National University of Defense Technology, 2001, 23(3): 12-17.(in Chinese) 郑庆晖, 张育林. 基于遗传算法的整周模糊度OTF解算. 国防科技大学学报, 2001, 23(3): 12-17.
[10] Wang X, Xu B Y. Application of immune genetic algorithm based on autocorrelation theory in GPS ambiguity solution. 2011 International Conference on Mechatronic Science, Electric Engineering and Computer, 2011: 1571- 1574.
[11] Pan L, Fu L. Ambiguity resolution using genetic algorithm. Journal of Geomatics, 2004, 29(3): 26-29. (in Chinese) 潘雷, 富立. 基于遗传算法的整周模糊度解算方法.测绘信息与工程, 2004, 29(3): 26-29.
[12] Liu Z M, Liu J N, Jiang W P, et al. Ambiguity resolution of GPS short-baseline using genetic algorithm. Geomatics and Information Science of Wuhan University, 2006, 31(7): 607-609, 631. (in Chinese) 刘智敏, 刘经南, 姜卫平, 等. 遗传算法解算GPS短基线整周模糊度的编码方法研究. 武汉大学学报: 信息科学版, 2006, 31(7): 607-609, 631.
[13] Liu Z M, Du Z X, Zou R. Application of the improved genetic algorithms with real code on GPS data processing. Proceedings of the Third International Conference on Natural Computation, 2007: 420-424.
[14] Liu Z M, Xiong W D, Kang Z Z, et al. GPS ambiguity resolution of single epoch data using genetic algorithms. Proceedings of the Sixth International Conference on Natural Computation, 2010: 2365-2368.
[15] Xing Z, Fan M. Ambiguity resolution based on improved genetic algorithm. Science of Surveying and Mapping, 2011, 36(3): 110-113. (in Chinese) 邢喆, 樊妙. 利用改进遗传算法求解整周模糊度. 测绘科学, 2011, 36(3): 110-113.
[16] Teunissen P J G. Integer least-squares theory for the GNSS compass. Journal of Geodesy, 2010, 84(7): 433-447. |