[1] 屠善澄. 卫星姿态动力学与控制[M]. 北京: 宇航出版社, 1999. Tu Shancheng. Modern satellite attitude dynamics and control[M]. Beijing: Astronautic Publishing House, 1999. (in Chinese)
[2] 钱勇. 高精度三轴稳定卫星姿态确定和控制系统研究. 西安: 西北工业大学航天学院, 2002. Qian Yong. Studies on the attitude determination and control system of high precision three-axis stabilized satellite. Xi'an: School of Astronautics, Northwestern Polytechnical University, 2002. (in Chinese)
[3] Zhang H H. Measuring attitude rates through angular momentum gyros[J]. Journal of Spacecraft, 1999, 36(6): 919-921.
[4] Tyc G, Staley D A, Whitehead W R, et al. GyroWheelTM - an gyrowheel an innovative new actuator/sensor for 3 axis spacecraft attitude control//Proceedings of the 13th Annual AIAA/USU Conference on Small Satellites. 1999: 1-13.
[5] Walkty I, Petersen J, Doherty T, et al. SCISAT-1 ACE mission C&DH unit development//Proceedings of 14th Annual/USU Conference on Small Satellites. 2000: 1-13.
[6] Rajagopal K R, Sivadasan K K. Low-stiction magnetic bearing for satellite application[J]. Journal of Applied Physics, 2002, 91(10): 6994-6996.
[7] Ralph H J, Timothy P D. G2 flywheel module design. NASA/CR-2006-213862, 2006.
[8] Tang L, Chen Y Q. Model development and adaptive imbalance vibration control of magnetic suspended system[J]. Chinese Journal of Aeronautics, 2007, 20(5): 434-442.
[9] 刘彬, 房建成, 刘刚, 等. 磁悬浮飞轮不平衡振动控制方法与试验研究[J]. 机械工程学报, 2010, 46(12): 188-194. Liu Bin, Fang Jiancheng, Liu Gang, et al. Unbalance vibration control and experiment research of magnetically suspended flywheels[J]. Journal of Mechanical Engineering, 2010, 46(12): 188-194. (in Chinese)
[10] Lappas V, Richie D, Hall C, et al. Survey of technology developments in flywheel attitude control and energy storage systems[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 354-365.
[11] 刘虎, 房建成, 刘刚. 基于磁悬浮动量轮微框架能力的卫星滚动-偏航姿态稳定控制研究[J]. 宇航学报, 2010, 31(4): 1063-1069. Liu Hu, Fang Jiancheng, Liu Gang. Satellite roll-yaw axis attitude stable control based on magnetically suspended momentum wheel with vernier gimballing capacity[J]. Journal of Astronautics, 2010, 31(4): 1063-1069. (in Chinese)
[12] Schweitzer G, Maslen E H. Magnetic bearings: theory, design, and application to rotating machinery[M]. Berlin: Springer, 2009.
[13] Eckardt T. The low noise momentum wheel MWX EM design and predicted properties//Proceedings of the 5th European Space Mechanisms and Tribology Symposium. 1992.
[14] Ahrens M, Kucera L, Larsonneur R. Performance of a magnetically suspended flywheel energy storage device[J]. IEEE Transactions on Control System Technology, 1996, 4(5): 494-502.
[15] Brown G V, Kascak A, Jansen R H, et al. Stabilizing gyroscopic modes in magnetic-bearing-supported flywheels by using cross-axis proportional gains. AIAA-2005-5955, 2005.
[16] Liu B, Fang J C, Liu G. Gimballing control and its implementation for a magnetically suspended flywheel//Proceedings of the 12th International Symposium on Magnetic Bearings. 2010: 161-166.
[17] 刘彬, 房建成, 刘刚. 基于TMS320C6713B+FPGA数字控制器实现磁悬浮飞轮主动振动控制[J]. 光学精密工程, 2009, 17(1): 151-157. Liu Bin, Fang Jiancheng, Liu Gang. Implementation of active vibration control for magnetically suspended flywheels based on TMS320C6713B+FPGA digital controller[J]. Optics and Precision Engineering, 2009, 17(1): 151-157. (in Chinese) |