航空学报 > 2011, Vol. 32 Issue (4): 598-607   doi: CNKI:11-1929/V.20110120.1729.004

磁悬浮反作用飞轮热设计方法与实验研究

王春娥1,2, 房建成1,2, 汤继强1,2, 孙津济1,2   

  1. 1. 北京航空航天大学 仪器科学与光电工程学院, 北京 100191;
    2. 北京航空航天大学 新型惯性仪表与导航系统技术国防重点学科实验室, 北京 100191
  • 收稿日期:2010-08-03 修回日期:2010-11-08 出版日期:2011-04-25 发布日期:2011-04-25
  • 通讯作者: Tel.: 010-82339487 E-mail: fangjiancheng@buaa.edu.cn E-mail:fangjiancheng@buaa.edu.cn
  • 作者简介:王春娥(1984- ) 女,博士研究生。主要研究方向:磁轴承与电机的电磁设计及热设计。 Tel: 010-82339550 E-mail: wangchune@aspe.buaa.edu.cn房建成(1965- ) 男,教授,博士生导师。主要研究方向:磁悬浮惯性执行机构及惯性导航与控制技术。 Tel: 010-82339487 E-mail: fangjiancheng@buaa.edu.cn
  • 基金资助:

    国家杰出青年科学基金(60825305);国家"973"计划(2009CB724001,2009CB724002)

Thermal Design Method and Experimental Research of Magnetically Suspended Reaction Flywheel

WANG Chun’e1,2, FANG Jiancheng1,2, TANG Jiqiang1,2, SUN Jinji1,2   

  1. 1. School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China;
    2. Novel Inertial Instrument & Navigation System Technology Key Laboratory of Fundamental Sciences for National Defense, Beihang University, Beijing 100191, China
  • Received:2010-08-03 Revised:2010-11-08 Online:2011-04-25 Published:2011-04-25

摘要: 作为新型航天器姿态控制执行机构,磁悬浮反作用飞轮工作在高真空环境下且转子完全悬浮,使得热量不易散出,故需要对飞轮进行温度场计算并进行热优化设计。为此,提出一种有限元与热网络模型相结合的优化热设计方法:首先利用有限元法计算温度场分布;然后对不符合温度要求的部件建立热网络模型,分析影响温度的因素,提出优化措施。该方法具有计算精度高、优化速度快的特点。将该方法应用于某样机的热优化设计中,使飞轮的最高温度由121.6 ℃降到了52.7 ℃。对经热设计前后的两台磁悬浮反作用飞轮的实验研究证明了热设计的正确性,从而为磁悬浮飞轮系统的结构设计和热设计奠定了基础。

关键词: 热设计, 有限元, 热网络, 磁悬浮反作用飞轮, 温度场

Abstract: As a novel type of actuator of the spacecraft for attitude control, the magnetically suspended reaction flywheel operates in a vacuum with its rotor suspended, making it difficult for its inner heat to dissipate, which results in the need for temperature calculation and thermal design. In this paper, a method composed of a finite element method and a thermal network is proposed as follows: first, the finite element model calculates the temperature distribution, and then the thermal network analyzes the factors that affect the higher temperatures and provides methods for optimization to enable the method to work precisely and quickly. The method is applied to the thermal optimization of a certain magnetically suspended flywheel, and is able to decrease its maximal temperature from 121.6 ℃ to 52.7 ℃. Experiments are carried out on flywheels with and without optimization, and the results prove the feasibility of the analysis. This study may serve as a basis for the structural and thermal design of a magnetically suspended flywheel system.

Key words: thermal design, finite element method, thermal network, magnetically suspended reaction flywheel, temperature field

中图分类号: