1 |
杨爱民, 陶丹. 国外舰载固定翼无人机发展趋势[J]. 飞机设计, 2022, 42(6): 38-42.
|
|
YANG A M, TAO D. Discussion on the development trend of shipborne fixed-wing UAVs abroad[J]. Aircraft Design, 2022, 42(6): 38-42 (in Chinese).
|
2 |
李明. 美国海军舰载无人空中加油系统项目及动力[J]. 航空动力, 2018(2): 40-44.
|
|
LI M. U.S.Navy carrier-based unmanned tanker MQ-25 and it’s engine selection[J]. Aerospace Power, 2018(2): 40-44 (in Chinese).
|
3 |
陈黎. 美海军无人作战飞机系统验证项目取得新进展[J]. 国防科技工业, 2013(9): 66-67.
|
|
CHEN L. New progress has been made in the verification project of unmanned combat aircraft system in the US Navy[J]. Defence Science & Technology Industry, 2013(9): 66-67 (in Chinese).
|
4 |
沈林成, 朱华勇, 牛轶峰. 从X-47B看美国无人作战飞机发展[J]. 国防科技, 2013, 34(5): 28-36.
|
|
SHEN L C, ZHU H Y, NIU Y F. A survey of unmanned combat aircraft system development from X-47B[J]. National Defense Science & Technology, 2013, 34(5): 28-36 (in Chinese).
|
5 |
杨王诗剑. X-47B的落幕说明了什么?[J]. 兵器知识, 2017(5): 48-51.
|
|
YANG W S J. What does the end of the X-47B show?[J]. Ordnance Knowledge, 2017(5): 48-51 (in Chinese).
|
6 |
朱超磊. 美军MQ-25A舰载无人加油机研制历程及影响分析[J]. 国防科技工业, 2021(5): 61-65.
|
|
ZHU C L. Development course and influence analysis of MQ-25A unmanned tanker on board of US Army[J]. Defence Science & Technology Industry, 2021(5): 61-65 (in Chinese).
|
7 |
李磊, 徐月, 蒋琪, 等. 2018年国外军用无人机装备及技术发展综述[J]. 战术导弹技术, 2019(2): 1-11.
|
|
LI L, XU Y, JIANG Q, et al. New development trends of military UAV equipment and technology in the world in 2018[J]. Tactical Missile Technology, 2019(2): 1-11 (in Chinese).
|
8 |
陈玉洁, 周军. 从X-47B到MQ-25看无人机及其动力发展[J]. 航空动力, 2020(2): 17-20.
|
|
CHEN Y J, ZHOU J. From X-47B to MQ-25: Development of UAVs and their powerplants[J]. Aerospace Power, 2020(2): 17-20 (in Chinese).
|
9 |
XIONG H, HU J, DIAO X M. Optimize energy efficiency of quadrotors via arm rotation[J]. Journal of Dynamic Systems, Measurement, and Control, 2019, 141(9): 091002.
|
10 |
Defense Inside. Boeing wins $ 805 million Pentagon contract for MQ-25 Stingra[EB/OL]. (2018-08-30)[2023-03-23]. .
|
11 |
USNI. Navy picks boeing to build MQ-25A stingray carrier-based drone[EB/OL]. (2018-08-30)[2023-03-23]. .
|
12 |
陈松云, 王达, 戚艳嘉. 美舰载无人机MQ-25航母适配性研究[J]. 舰船科学技术, 2019, 41(9): 154-157.
|
|
CHEN S Y, WANG D, QI Y J. Research on U.S. aircraft carrier adaptability of ship-borne un-manned aerial vehicle MQ-25[J]. Ship Science and Technology, 2019, 41(9): 154-157 (in Chinese).
|
13 |
王国栋, 刘绍辉, 韩杰. 美舰载无人加油机方案与关键技术分析[C]∥第九届中国航空学会青年科技论坛论文集. 北京: 中国航空学会, 2020: 1023-1030.
|
|
WANG G D, LIU S H, HAN J. Technology proposals and critical technologies of US carrier unmanned tanker[C]∥Proceedings of the 9th China Aeronautical Society Youth Science and Technology Forum. Beijing: Chinese society of aeronautics and astronautics, 2020: 1023-1030 (in Chinese).
|
14 |
张斌. MQ-25舰载无人加油机项目竞标分析[J]. 国际航空, 2018(10): 25-28.
|
|
ZHANG B. Analysis of bidding for MQ-25 carrier-borne unmanned refueling aircraft project[J]. International Aviation, 2018(10): 25-28 (in Chinese).
|
15 |
EHRHARD T P, Range ROBERT O., persistence, stealth, and networking: The case for a carrier-based unmanned combat air system[R]. Washington, D. C.: CSBA, 2008.
|
16 |
USNI. Navy releases final MQ-25A stingray RFP; General atomics bid revealed[EB/OL]. (2017-10-10)[2023-03-23]. .
|
17 |
门金柱, 王建国. 美军航母舰载无人机发展目标的调整及分析[J]. 飞航导弹, 2016(12): 14-15, 59.
|
|
MEN J Z, WANG J G. Adjustment and analysis of the development goal of U.S. aircraft carrier-borne UAV[J]. Aerodynamic Missile Journal, 2016(12): 14-15, 59 (in Chinese).
|
18 |
孙明月, 于宪钊. 美国海军舰载机联队未来建设重点[J]. 军事文摘, 2020(1): 47-50.
|
|
SUN M Y, YU X Z. Key points of future construction of US Navy carrier-based aircraft wing[J]. Military Digest, 2020(1): 47-50 (in Chinese).
|
19 |
GAO. GAO analysis of department of defense data: GAO-17-647[R]. Washington, D. C.: GAO, 2017.
|
20 |
BRYAN C, ADAM L, PETERH, et al. Regaining the high ground at sea: Transforming the U.S. navy’s carrier air wing for great power competition[EB/OL]. (2018-12-14)[2023-03-23]. .
|
21 |
王永庆. 固定翼舰载战斗机关键技术与未来发展[J]. 航空学报, 2021, 42(8): 525859.
|
|
WANG Y Q. Fixed-wing carrier-based aircraft: Key technologies and future development[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525859 (in Chinese).
|
22 |
周胜明. 航母甲板运动对舰载机着舰影响仿真分析[J]. 飞机设计, 2012, 32(6): 28-32.
|
|
ZHOU S M. Simulation analysis on influence of carrier deck motion on carrier-based aircraft landing[J]. Aircraft Design, 2012, 32(6): 28-32 (in Chinese).
|
23 |
于瀛. 影响舰载机着舰的环境因素[J]. 现代舰船, 2012(2): 26-27.
|
|
YU Y. Environmental factors affecting carrier-based aircraft landing[J]. Modern Ships, 2012(2): 26-27 (in Chinese).
|
24 |
郭润兆, 张宏, 张健. 舰载机布局的机舰适配性设计研究[J]. 航空科学技术, 2014, 25(6): 5-8.
|
|
GUO R Z, ZHANG H, ZHANG J. The study on configuration adaptive design of carrier-based aircraft[J]. Aeronautical Science & Technology, 2014, 25(6): 5-8 (in Chinese).
|
25 |
王永庆, 罗云宝, 王奇涛, 等. 面向机舰适配的舰载飞机起降特性分析[J]. 航空学报, 2016, 37(1): 269-277.
|
|
WANG Y Q, LUO Y B, WANG Q T, et al. Carrier suitability-oriented launch and recovery characteristics of piloted carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 269-277 (in Chinese).
|
26 |
田晓地. F-35战斗机经济可承受性问题的启示[J]. 价值工程, 2015, 34(23): 203-206.
|
|
TIAN X D. Enlightenment of economic affordability issues of F-35 fighter[J]. Value Engineering, 2015, 34(23): 203-206 (in Chinese).
|
27 |
杨涛, 药红红, 陈星星. F-35战斗机任务系统研制试验综合分析[J]. 飞航导弹, 2021(2): 46-52.
|
|
YANG T, YAO H H, CHEN X X. Comprehensive analysis of development and test of F-35 fighter mission system[J]. Aerodynamic Missile Journal, 2021(2): 46-52 (in Chinese).
|
28 |
李明. 美国新重型直升机CH-53K接近形成初始作战能力[J]. 航空动力, 2019(6): 25-28.
|
|
LI M. U.S marine’s new heavy lift helicopter CH-53K approaching IOC[J]. Aerospace Power, 2019(6): 25-28 (in Chinese).
|
29 |
COLIN B. X-47B head to sea[EB/OL]. (2013-02-04)[2023-03-23]. .
|
30 |
贾高伟, 郭正. 国外隐身无人机的发展[J]. 国防科技, 2019, 40(2): 13-16.
|
|
JIA G W, GUO Z. The development of the foreign stealth UAV[J]. National Defense Technology, 2019, 40(2): 13-16 (in Chinese).
|
31 |
阴鹏, 贾高伟, 杨希祥. 外军无人机隐身设计发展研究[J]. 飞航导弹, 2021(12): 69-74.
|
|
YIN P, JIA G W, YANG X X. Research on stealth design development of foreign military UAV[J]. Aerodynamic Missile Journal, 2021(12): 69-74 (in Chinese).
|