1 |
束珺, 徐东光, 韩志熔, 等. 结冰风洞过冷大水滴试验中混合翼设计[J]. 航空学报, 2023, 44(1): 627182.
|
|
SHU J, XU D G, HAN Z R, et al. Hybrid wing design of icing wind tunnel supercooled large droplet icing test[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 627182 (in Chinese).
|
2 |
李浩然, 段玉宇, 张宇飞, 等. 结冰模拟软件AERO-ICE中的关键数值方法[J]. 航空学报, 2021, 42(): 726371.
|
|
LI H R, DUAN Y Y, ZHANG Y F, et al. Numerical method of ice-accretion software AERO-ICE[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726371 (in Chinese).
|
3 |
LI L K, TIAN L C, LIU Y, et al. An experimental study on a hot-air-based anti-/ de-icing system for the icing protection of aero-engine inlet guide vanes[C]∥ SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale: SAE International, 2020.
|
4 |
HE X F, AI J L. Taxiing stability verification and airworthiness certification for amphibious aircraft[J]. Science China Information Sciences, 2019, 62(1): 10207.
|
5 |
符澄, 宋文萍, 彭强, 等. 结冰风洞过冷大水滴结冰条件模拟能力综述[J]. 实验流体力学, 2017, 31(4): 1-7.
|
|
FU C, SONG W P, PENG Q, et al. An overview of supercooled large droplets icing condition simulation capability in icing wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 1-7 (in Chinese).
|
6 |
FLEMMING R, ALLDRIDGE P, DOEPPNER R. Artificial icing tests of the S-92A helicopter in the McKinley climatic laboratory[C]∥ Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004.
|
7 |
CAO Y H, TAN W Y, SU Y A, et al. The effects of icing on aircraft longitudinal aerodynamic characteristics[J]. Mathematics, 2020, 8(7): 1171.
|
8 |
王绍龙, 李岩, 田川公太朗, 等. 旋转叶片结冰风洞试验研究[J]. 工程热物理学报, 2017, 38(6): 1229-1236.
|
|
WANG S L, LI Y, TAGAWA K, et al. A wind tunnel experimental study on icing distribution of rotating blade[J]. Journal of Engineering Thermophysics, 2017, 38(6): 1229-1236 (in Chinese).
|
9 |
李岩, 王绍龙, 易贤, 等. 绕轴旋转圆柱结冰特性结冰风洞试验[J]. 航空学报, 2017, 38(2): 520703.
|
|
LI Y, WANG S L, YI X, et al. An icing wind tunnel test on icing characteristics of cylinder rotating around a shaft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520703 (in Chinese).
|
10 |
李岩, 王绍龙, 冯放, 等. 绕轴旋转翼型结冰分布的结冰风洞试验研究[J]. 哈尔滨工程大学学报, 2017, 38(4): 545-553.
|
|
LI Y, WANG S L, FENG F, et al. An icing wind tunnel experiment on the icing distribution of a blade airfoil rotating around a shaft[J]. Journal of Harbin Engineering University, 2017, 38(4): 545-553 (in Chinese).
|
11 |
SUNDEN B, WU Z. On icing and icing mitigation of wind turbine blades in cold climate[J]. Journal of Energy Resources Technology, 2015, 137(5): 051203.
|
12 |
PARENT O, ILINCA A. Anti-icing and de-icing techniques for wind turbines: Critical review[J]. Cold Regions Science and Technology, 2011, 65(1): 88-96.
|
13 |
张旋. 过冷水滴的结冰与碰撞及其耦合特性研究[D]. 北京: 清华大学, 2019: 40-59.
|
|
ZHANG X. Research on freezing and impact processes of supercooled water droplet and their coupling characteristics[D]. Beijing: Tsinghua University, 2019: 40-59 (in Chinese).
|
14 |
范瑶. 液滴撞击低温金属壁面行为特性研究[D]. 重庆: 重庆大学, 2016: 15-36.
|
|
FAN Y. Experimental study of droplet impact on undercooling metal surface[D]. Chongqing: Chongqing University, 2016: 15-36 (in Chinese).
|
15 |
尚宇恒, 白博峰, 侯予, 等. 液滴撞击过冷壁面的结冰特性实验研究[J]. 西安交通大学学报, 2021, 55(10): 144-149.
|
|
SHANG Y H, BAI B F, HOU Y, et al. Experimental research for freezing characteristics of droplets impacting on supercooled surface[J]. Journal of Xi’an Jiaotong University, 2021, 55(10): 144-149 (in Chinese).
|
16 |
Society of Automotive Engineers. Calibration and acceptance of icing wind tunnels:SAE ARP-5905 [S]. New York: Society of Automotive Engineers, 2015.
|
17 |
YEONG Y H, SOKHEY J, LOTH E. Ice adhesion on superhydrophobic coatings in an icing wind tunnel[M]∥ Contamination mitigating polymeric coatings for extreme environments. Cham: Springer International Publishing, 2018: 99-121.
|
18 |
Atmospheric icing of structures: [S]. Geneva: International Organization for Standardization, 2017.
|
19 |
ZHENG M, GUO Z Q, DONG W, et al. Experimental investigation on ice accretion on a rotating aero-engine spinner with hydrophobic coating[J]. International Journal of Heat and Mass Transfer, 2019, 136: 404-414.
|