首页 >

高速叶栅纳秒脉冲等离子体流动控制研究

张海灯,李应红,吴云,赵勤   

  1. 空军工程大学
  • 收稿日期:2013-08-08 修回日期:2013-11-21 发布日期:2013-12-08
  • 通讯作者: 李应红
  • 基金资助:
    国家“985”工程科技创新平台建设;其他项目;国家“八六三”高技术研究发展计划(2005AA761020);国家863高技术重点项目;国家“十一五”科技攻关项目(JPPT-115-189);河南省教育厅自然科学基金项目(2007460007);河南科技大学科技研究基金(2006QN013)

Nanosecond Pulsed Plasma Flow Control on High Speed Compressor Cascade

  • Received:2013-08-08 Revised:2013-11-21 Published:2013-12-08

摘要: 为研究纳秒脉冲等离子体气动激励在高亚音速来流条件下抑制压气机叶栅流动分离机制,建立了基于唯象学的模拟纳秒脉冲介质阻挡放电特性的热源模型,在微秒量级时间尺度上分析研究了纳秒脉冲等离子体气动激励对叶栅通道流动结构的影响机制,并初步探究了纳秒脉冲等离子体气动激励高速叶栅的流动控制规律。结果表明:基于唯象学的热源模型能够较好地模拟纳秒脉冲等离子体气动激励诱导产生冲击波的气动特性;纳秒脉冲等离子体气动激励诱导产生的冲击波在高亚音速条件下能够对叶栅通道流动结构产生较大影响,其影响规律与激励特征和流场特性有关;高亚音速来流条件下,在叶栅通道中施加纳秒脉冲等离子体气动激励能够降低通道出口总压损失,改变流场结构。

关键词: 高亚音速, 纳秒脉冲, 冲击波, 流动结构, 流动分离, 影响规律

Abstract: In order to research the mechanism of nanosecond pulsed plasma aerodynamic actuation flow control on the high subsonic speed compressor cascade, the heat source model based on the phenomenology is established to simulate the nature of nanosecond pulsed dielectric barrier discharge. The influence law of nanosecond pulsed plasma aerodynamic actuation on compressor cascade flow field is researched in detail from a microsecond time scale perspective, and the preliminary research on the nanosecond pulsed plasma aerodynamic actuation flow control is delivered. Results are: the heat source model based on the phenomenology is successful in modeling the aerodynamic performance of the shock wave produced by nanosecond pulsed plasma aerodynamic actuation; under the condition of high subsonic speed, the shock wave produced by the nanosecond pulsed plasma aerodynamic actuation still has a dramatic impact on the structure of compressor cascade flow field, and the impact is influenced by the actuation feature and the character of the flow field; although the inlet flow is high subsonic, the nanosecond pulsed plasma aerodynamic actuation is capable of decreasing the total pressure loss at the outlet of the compressor cascade passage, and changing the structure of the flow field.

Key words: high subsonic, nanosecond pulse, shock wave, flow structure, separation structure, influence law

中图分类号: