Please wait a minute...
航空学报
  首页 | 关于本刊 | 编 委 会 | 最新录用 | 过刊浏览 | 期刊征订 | 下载中心 | 广告服务 | 博客 | 论坛 | 联系我们 | English
航空学报  2017, Vol. 38 Issue (8): 320833-320833    DOI: 10.7527/S1000-6893.2016.0297
  电子电气工程与控制 本期目录 | 过刊浏览 | 高级检索 |
一种改进双块补零北斗导航接收机弱信号捕获方法
孟骞1,2, 刘建业1,2, 曾庆化1,2, 冯绍军3, 李荣冰1,2
1. 南京航空航天大学 导航研究中心, 南京 210016;
2. 卫星通信与导航协同创新中心, 南京 210016;
3. 帝国理工学院 交通研究中心, 伦敦 SW7 2AZ
BeiDou navigation receiver weak signal acquisition aided by block improved DBZP
MENG Qian1,2, LIU Jianye1,2, ZENG Qinghua1,2, FENG Shaojun3, LI Rongbing1,2
1. Navigation Research Center, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2. Satellite Communication and Navigation Collaborative Innovation Center, Nanjing 210016, China;
3. Centre for Transport Studies, Imperial College London, London, SW7 2AZ, UK
下载:  PDF(3456KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

利用卫星导航系统对高轨航天器进行自主导航与高精度定轨,对接收机的捕获灵敏度要求极高,双块补零(DBZP)算法是无辅助下卫星导航弱信号捕获的理想方案,然而受限于数据处理量大,DBZP实际应用难度大。在深入分析双块补零机理的基础上,结合矩阵重构的思想,提出了一种改进双块补零北斗导航接收机弱信号捕获方法。该方法对参与块内相关运算的基带信号和本地测距码分别进行重构,解决了块内点数与快速傅里叶变换输入点数之间的矛盾,提高了北斗导航接收机弱信号捕获性能。仿真实验结果分析表明,改进双块补零算法对信噪比没有损失,可以保证对低至15 dB·Hz的弱信号进行有效捕获,能够满足高轨航天器定轨、室内外无缝导航等对接收机高灵敏度的需求。本方法是在块内运算层面对DBZP进行优化,具备良好的通用性和可移植性,与优化相干积分策略的各种改进DBZP算法可以无缝对接,进一步提高北斗导航接收机信号处理的效能。同时,重构的思想也适用于其他采用码分多址信号的卫星导航系统的弱信号检测和捕获,对提升多星座卫星导航系统的基带信号处理性能具有参考意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟骞
刘建业
曾庆化
冯绍军
李荣冰
关键词:  全球导航卫星系统自主导航信号捕获快速傅里叶变换块内重构;    
Abstract: 

The high altitude spacecraft autonomous navigation and orbit determination technology based on the global navigation satellite system has higher requirements for the acquisition sensitivity of the receiver. Double block zero padding (DBZP) method is an ideal solution for unaided satellite navigation receiver weak signal acquisition. But the classical DBZP has low engineering value to create barriers for its popularization and application. With the help of matrix reconfiguration,a new BeiDou weak signal acquisition method aided by block improved DBZP is proposed based on the analysis of the function realization mechanism. The baseband signal and local pseudo-random code are reconfigurated to solve the contradiction between the block points and fast Fourier transform input points, greatly improving the efficiency of weak signal acquisition. Performance analysis and simulation results show that the proposed method can realize the signal acquisition low to 15 dB·Hz effectively without any loss of SNR, which can meet the requirement for high receiver sensitivity in high-altitude spacecraft orbit determination, and indoor and outdoor seamless navigation. The proposed method is the optimization on the level of DBZP block operation, and can seamlessly integrate with the other improved DBZP methods focusing on optimization of coherent integration scheme. The proposed method is thus of universal applicability and transplantability. Meanwhile, the idea of reconfiguration can be applied to any other global ravigation satellite system signal detection and acquisition based on code division multiple access, and can provide some reference to baseband signal processing of multi constellation navigation receiver.

Key words:  global navigation satellite system;    autonomous navigation;    signal acquisition;    fast Fourier transform;    block reconfiguration;
收稿日期:  2016-10-10      修回日期:  2016-10-28           出版日期:  2017-08-15      发布日期:  2016-11-21      期的出版日期:  2017-08-15
ZTFLH:  V249.32+4  
基金资助: 

国家自然科学基金(61533008,61374115,61328301);中央高校基本科研业务费专项资金(NS2015037);江苏省普通高校学术学位研究生科研创新计划(KYLX16-0379);国家留学基金;英国帝国理工学院交通研究中心资助

通讯作者:  刘建业,E-mail:ljyac@nuaa.edu.cn    E-mail:  ljyac@nuaa.edu.cn
引用本文:    
孟骞, 刘建业, 曾庆化, 冯绍军, 李荣冰. 一种改进双块补零北斗导航接收机弱信号捕获方法[J]. 航空学报, 2017, 38(8): 320833-320833.
MENG Qian, LIU Jianye, ZENG Qinghua, FENG Shaojun, LI Rongbing. BeiDou navigation receiver weak signal acquisition aided by block improved DBZP. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(8): 320833-320833.
链接本文:  
http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2016.0297  或          http://hkxb.buaa.edu.cn/CN/Y2017/V38/I8/320833

[1] BAUER F H, DENNEHY N. Looking back and looking forward:Reprising the promise and predicting the future of formation flying and spaceborne GPS navigation systems:NF1676L-20681[R]. Washington, D.C.:NASA, 2015:1-24.
[2] WINTERNITZ L M B, BAMFORD W A, HECKLER G W. A GPS receiver for high-altitude satellite navigation[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(4):541-556.
[3] 徐肖豪, 杨传森, 刘瑞华. GNSS用户端自主完好性监测研究综述[J]. 航空学报, 2013, 34(3):451-463. XU X H, YANG C S, LIU R H. Review and prospect of GNSS receiver autonomous integrity monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):451-463(in Chinese).
[4] FANG H, ZHANG R, WANG J, et al. Injected transfer orbit determination of lunar probe Chang'E 5T1 using short-arc rocket GPS measurements[J]. Advances in Space Research, 2015, 56(8):1726-1736.
[5] HECHENBLAIKNER G, FLOCH J J, SOUALLE F, et al. GNSS-based precise orbit determination for a highly eccentric orbit in the STE-QUEST mission[J]. Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation, 2013:3347-3356.
[6] 周鸿伟, 王陆潇, 宿晨庚, 等. 基于北斗混合星座的星历参数适用性分析[J]. 航空学报, 2014, 35(4):1064-1070. ZHOU H W, WANG L X, SU C G, et al. Analysis on applicability of ephemeris parameters for mixed BeiDou constellation[J]. Acta Aeronautica et Astronautica Sinca, 2014, 35(4):1064-1070(in Chinese).
[7] WINTERNITZ L B, BAMFORD W A, PRICE S R, et al. Global positioning system navigation above 76000 km for NASA's magnetospheric multiscale mission[C]//Proceeding of 201639th AAS GN&C Conference. Washington, D.C.:NASA, 2016:1-14.
[8] MARMET F X, MAUREAU J, CALAPRICE M, et al. GPS/Galileo navigation in GTO/GEO orbit[J]. Acta Astronautica, 2015, 117:263-276.
[9] LIN D M, TSUI J B Y. Comparison of acquisition methods for software GPS receiver[C]//Proceeding of ION GPS 2000, 2000:2385-2390.
[10] HECKLER G W, GARRISON J L. Implementation and testing of an unaided method for the acquisition of weak GPS C/A code signals[J]. Journal of the Institute of Navigation, 2009, 56(4):241-259.
[11] FOUCRAS M, JULIEN O, MACABIAU C, et al. A novel computationally efficient Galileo E1 OS acquisition method for GNSS software receiver[J]. International Technical Meeting of the Satellite Division of the Institute of Navigation, 2012, 137(1):365-383.
[12] ZIEDAN N I. Global navigation satellite system receiver for weak signals under all dynamic conditions[D]. Lafayette:University of Purdue, 2004:47-51.
[13] FOUCRAS M. Performance analysis of the modernized GNSS signal acquisition[D]. Toulouse:Ecole Nationale de l'Aviation Civile, 2015:118-124.
[14] ZHANG W, GHOGHO M. Computational efficiency improvement for unaided weak GPS signal acquisition[J]. Journal of Navigation, 2012, 65(2):363-375.
[15] 张文. 无辅助的GNSS信号检测技术研究[D]. 长沙:国防科学技术大学, 2012:84-91. ZHANG W. Research on unaided GNSS signal detection[D]. Changsha:National University of Defense Technology, 2012:84-91(in Chinese).
[16] SECO-GRANADOS G, LOPEZ-SALCEDO J, JIMÉNEZ-BAÑOS D, et al. Challenges in indoor global navigation satellite systems:Unveiling its core features in signal processing[J]. IEEE Signal Processing Magazine, 2012, 29(2):108-131.
[17] LIU J, CHEN R, PEI L, et al. A hybrid smartphone indoor positioning solution for mobile LBS[J]. Sensors, 2012, 12(12):17208-17233.
[18] 杭义军, 刘建业, 李荣冰, 等. 基于混合特征匹配的微惯性/激光雷达组合导航方法[J]. 航空学报, 2014, 35(9):2583-2592. HANG Y J, LIU J Y, LI R B, et al. MEMS IMU/LADAR integrated navigation method based on mixed feature match[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2583-2592(in Chinese).
[19] JAYARAM C, MURTHY C R. Noncoherent integration for signal detection:Analysis under model uncertainties[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4):2413-2430.
[20] ELLIOTT D F. Handbook of digital signal processing:Engineering applications[M]. Salt Lake City:Academic Press, 2013:527-630.
[21] LECLERE J, BOTTERON C, FARINE P A. Acquisition of modem GNSS signal using modified parallel code-phase search architechure[J]. Signal Processing, 2014, 95:177-191.
[22] OLIVIER J. Design of galileo L1F receiver tracking loops[D]. Calgary:University of Calgary, 2005:286-289.

[1] 张洪伦, 巴晓辉, 陈杰, 周航. 适用于BOC(m,n)信号的无模糊捕获技术[J]. 航空学报, 2017, 38(4): 320394-320394.
[2] 任嘉伟, 杨贵同, 贾维敏, 姚敏立. BOC信号合成相关函数通用无模糊跟踪方法[J]. 航空学报, 2014, 35(7): 2031-2040.
[3] 程俊仁, 刘光斌, 姚志成, 刘冬, 姚智颖. 一种鲁棒GNSS矢量跟踪环[J]. 航空学报, 2014, 35(11): 3106-3114.
[4] 崔平远, 徐瑞, 朱圣英, 赵凡宇. 深空探测器自主技术发展现状与趋势[J]. 航空学报, 2014, 35(1): 13-28.
[5] 刘芳, 冯永新. 一种解决时频不确定问题的长码捕获算法[J]. 航空学报, 2013, 34(8): 1924-1933.
[6] 伍维甲, 吴德伟, 戚君宜. GNSS双频导航信号用户完好性监测机制研究[J]. 航空学报, 2012, 33(12): 2246-2252.
[7] 宁宇, 王志刚, 邓逸凡, 陈士橹. 导航中单位矢量的二次旋转乘法观测模型[J]. 航空学报, 2012, 33(11): 2106-2112.
[8] 杨利民;苏卫民;顾红. 基于脉组间频率步进的合成超宽带距离像及速度分析[J]. 航空学报, 2010, 31(10): 2046-2055.
[9] 钱伟行;刘建业;李荣冰;郑智明. INS/GNSS组合导航系统空中快速对准方法[J]. 航空学报, 2009, 30(12): 2395-2400.
[10] 张彦仲. 具有(N-1)/2次乘法的快速傅里叶变换[J]. 航空学报, 1989, 10(9): 462-471.
[1] Wan Min;Zhang Weihong;Tan Gang. Efficient Simulation Model of Material Removal in Peripheral Milling of Thin-walled Workpiece[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(5): 1247 -1251 .
[2] Rong Yisheng;Liu Weiqiang. Influence of Opposing Jet on Flow Field and Aerodynamic Heating at Nose of a Reentry Vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1552 -1557 .
[3] Yang Chao;Song Chen;Wu Zhigang;Zhang Quhui. Active Flutter Suppression of Airplane Configuration with Multiple Control Surfaces[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1501 -1508 .
[4] Li Pan;Chen Renliang. Rotor Tip Vortex Model and Its Effect on Free-vortex Wake Analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1517 -1523 .
[5] TAN Hui-jun;GUO Rong-wei. Wind Tunnel Tests of Hypersonic Inlets for Ramjet Modules of  Ramjet scramjet Combined Engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 783 -790 .
[6] Lei Shihao;Jiang Zimao. GUIDELINES OF AIRCRAFT CABIN ENVIRONMENT ACOUSTICS DESIGN[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(6): 716 -719 .
[7] WANG Xiao-lu;ZHU Zi-qiang. Hybrid Optimization Design of High Performance Unmanned Aerial Vehicle Airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(4): 839 -844 .
[8] Cao Xiaorui;Dong Chaoyang;Wang Qing;Chen Yu. Radome Slope Estimation Using Multiple Model Based on EKF[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1608 -1613 .
[9] Li Guomin;Liu Jun;Sha Jiangbo. Effect of Si and Ti on Microstructures and Mechanical Properties of Nb-6Hf-4Zr-2B Alloy at Room Temperature[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(8): 1688 -1694 .
[10] Liang Zhi-yong;Zhang Zhou-guang. Song Huang-Cheng. THE STATISTICAL ANALYSIS AND CALCULATING MODEL OF TENSILE PROPERTIES OF SINGLE AND HYBRID COMPOSITES[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(5): 330 -335 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   

版权所有 © 航空学报编辑部  
地址:北京市海淀区北四环中路辅路238号 邮政编码:100083
电话:010-82317058, 82318016   E-mail:hkxb@buaa.edu.cn
为了更好的浏览网站,建议使用IE或IE内核浏览器