Please wait a minute...
航空学报 > 2015, Vol. 36 Issue (5): 1617-1626   doi: 10.7527/S1000-6893.2015.0010
基于定位误差修正的运动目标TDOA/FDOA无源定位方法
刘洋1, 杨乐1,2, 郭福成1, 姜文利1
1. 国防科学技术大学 电子科学与工程学院, 长沙 410073;
2. 江南大学 物联网工程学院, 无锡 214122
Moving targets TDOA/FDOA passive localization algorithm based on localization error refinement
LIU Yang1, YANG Le1,2, GUO Fucheng1, JIANG Wenli1
1. College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China;
2. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
下载:  PDF (2558KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

针对时差(TDOA)、频差(FDOA)无源定位的两步加权最小二乘(TSWLS)方法定位均方根误差(RMSE)和定位偏差适应测量噪声能力差的问题,在分析了影响两步法定位性能的因素基础上提出一种基于一阶泰勒级数展开的定位误差修正方法。该方法的第1步和两步法相同;其第2步避免了两步法第2步中引入估计偏差的平方运算,利用一阶泰勒级数展开得到第1步定位误差的线性最小均方估计,修正第1步定位结果得到目标位置和速度的最终估计,从理论上证明了该方法可以达到定位的克拉美罗下限(CRLB)。计算机仿真对比了新方法和TSWLS方法、基于泰勒级数(TS)展开的迭代极大似然(ML)方法以及约束总体最小二乘(CTLS)方法的定位性能,新算法复杂度和两步法相当,且均方误差和定位偏差低于两步法、泰勒级数法和CTLS方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘洋
杨乐
郭福成
姜文利
关键词:  时差  频差  定位  泰勒级数  加权最小二乘    
Abstract: 

For the two-stage weighted least squares (TSWLS) technique of passive source localization using time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements, which has the problem that the root mean square error (RMSE) and localization bias is large as the measurement noise increases. Based on analyzing the factor influencing the performances of the TSWLS firstly and then improves the TSWLS via Taylor-series (TS) expansion technique. The first stage of the new algorithm is the same as the one of TSWLS. At the second stage of the new algorithm, the localization error of the first stage is identified through utilizing the first-order Taylor-series expansion. Through updating the first-stage localization error, the final localization output is obtained. Theoretical performance analysis shows that the proposed estimator can attain the Cramer-Rao lower bound (CRLB) accuracy. Computer simulations are used to contrast the new technique with the TSWLS algorithm, the iterative maximum likelihood method based on TS and the constrained total least squares (CTLS) algorithm in terms of their localization RMSE and the localization bias. The new algorithm whose complexity is almost the same as TSWLS, the RMSE and localization bias are lower than TSWLS, TS and CTLS algorithm.

Key words:  time difference of arrival    frequency difference of arrival    localization    Taylor-series    weighted least squares
收稿日期:  2014-06-15      修回日期:  2015-01-07           出版日期:  2015-05-15      发布日期:  2015-01-23      期的出版日期:  2015-05-15
ZTFLH:  V247.5  
  TN958.97  
基金资助: 

国家自然科学基金(61304264);国防科技重点实验室基金 (9140C860304)

通讯作者:  郭福成Tel.: 0731-84573490 E-mail: gfcly@21cn.com    E-mail:  gfcly@21cn.com
作者简介:  刘洋 男, 博士研究生。主要研究方向:无源定位和雷达信号处理。Tel: 0731-84573490 E-mail: ruben052013@126.com;杨乐 男, 博士, 副教授, 硕士生导师。 主要研究方向: 无源定位和传感器网络、目标跟踪及信号检测。Tel: 0731-84573490 E-mail: le.yang.le@gmail.com;郭福成 男, 博士, 教授, 博士生导师。 主要研究方向: 无源定位、跟踪滤波、信号处理技术。Tel: 0731-84573490 E-mail: gfcly@21cn.com;姜文利 男, 博士, 教授, 博士生导师。主要研究方向: 综合电子战技术、空间信息处理。Tel: 0731-84573490 E-mail: jiangwenlibetter@163.com
引用本文:    
刘洋, 杨乐, 郭福成, 姜文利. 基于定位误差修正的运动目标TDOA/FDOA无源定位方法[J]. 航空学报, 2015, 36(5): 1617-1626.
LIU Yang, YANG Le, GUO Fucheng, JIANG Wenli. Moving targets TDOA/FDOA passive localization algorithm based on localization error refinement. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(5): 1617-1626.
链接本文:  
http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2015.0010  或          http://hkxb.buaa.edu.cn/CN/Y2015/V36/I5/1617

[1] Chan Y T, Ho K C. A simple and efficient estimator for hyperbolic location [J]. IEEE Transactions Signal Processing, 1994, 42(8): 1905-1915.
[2] Xu Z, Qu C W, Luo H Z. Novel multiple moving observers TDOA localization algorithm without introducing intermediate variable[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6): 1665-1672 (in Chinese).徐征, 曲长文, 骆卉子. 无需中间变量的多运动站时差定位新算法[J]. 航空学报, 2014, 35(6): 1665-1672.
[3] Carter G C. Time delay estimation for passive sonar signal processing [J]. IEEE Transactions on Acoustics, Speech, Signal Processing, 1981, ASSP-29(3): 462-470.
[4] Foy W H. Position-location solution by Taylor-series estimation [J]. IEEE Transactions Aerospace Electronic System, 1976, 12(3): 187-194.
[5] Ho K C, Xu W W. An accurate algebraic solution for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2453-2463.
[6] Guo F C, Fan Y. A method of dual-satellites geolocation using TDOA and FDOA and its precision analysis[J]. Journal of Astronautics, 2008, 29(4): 1381-1386 (in Chinese).郭福成, 樊昀. 双星时差频差联台定位方法及其误差分析[J]. 宇航学报, 2008, 29(4): 1381-1386.
[7] Yu H G, Huang G M, Gao J. Approximate maximum likelihood algorithm for moving source localization using TDOA and FDOA measurements [J]. Chinese Journal of Aeronautics, 2012, 25(4): 593-597.
[8] Guo F C, Ho K C. A quadratic constraint solution method for TDOA and FDOA localization[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing, Piscataway, NJ: IEEE, 2011: 2588-2591.
[9] Yu H G, Huang G M, Gao J. Constrained total least-squares localization algorithm using time difference of arrival and frequency difference of arrival measurements with sensor location uncertainties[J]. IET Radar Sonar & Navigation, 2012, 6(9): 891-899.
[10] Yu H G, Huang G M, Gao J, et al. An efficient constrained weighted least squares algorithm for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Wireless Communications, 2012, 11(3): 44-47.
[11] Yu H G, Huang G M, Gao J. Practical constrained least-square algorithm for moving source location using TDOA and FDOA measurements[J]. Journal of Systems Engineering and Electronics, 2012, 23(4): 488-494.
[12] Qu F Y, Meng X W. Source localization using TDOA and FDOA measurements based on constrained total least squares algorithm [J]. Journal of Electronics and Information Technology, 2014, 36(5): 1075-1081 (in Chinese).曲付勇, 孟祥伟. 基于约束总体最小二乘方法的到达时差到达频差无源定位算法[J]. 电子与信息学报, 2014, 36(5): 1075-1081.
[13] Qu F Y, Guo F C, Meng X W, et al. Constrained location algorithms based on total least squares method using TDOA and FDOA measurements[C]//IET International Conference on Automatic Control and Artificial Intelligence, 2012: 2587-2590.
[14] Qu F Y, Guo F C, Meng X W, et al. Comments on constrained total least-squares localization algorithm using time difference of arrival and frequency difference of arrival measurements with sensor location uncertainties [J]. IET Radar, Sonar & Navigation, 2014, 8(6): 692-693.
[15] Schifrin B. A note on constrained total least-squares estimation[J]. Linear Algebra and Its Applications, 2006, 417(6): 245-258.
[16] Wei H W, Peng R, Wan Q. Multidimensional scaling analysis for passive moving target localization with TDOA and FDOA measurements [J]. IEEE Transactions on Signal Processing, 2010, 58(3): 677-688.
[17] Wang G, Li Y M, Ansari N. A semi-definite relaxation method for source localization using TDOA and FDOA measurements[J]. IEEE Transactions on Vehicular Technology, 2013, 62(2): 853-862.
[18] Xu B, Qi W D, Li W, et al. Turbo-TSWLS: enhanced two-step weighted least squares estimator for TDOA-based localization[J]. Electronics Letters, 2012, 48(25):1597-1598.
[19] Kay S M. Fundamentals of statistical signal processing volume I: estimation theory [M]. Upper Saddle River, NJ: Prentice Hall, 1998: 24-45.
[20] Zhang X D. Matrix analysis and application [M].Beijing: Tsinghua University Press, 2004: 65-69 (in Chinese).张贤达.矩阵分析与应用[M].北京: 清华大学出社, 2004: 65-69.
[21] Amar A, Leus G, Friedlander B. Emitter localization given time delay and frequency shift measurements [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1826-1837.

[1] 孙霆, 董春曦, 董阳阳, 刘明明. 一种基于观测站数目最小化的TDOA/FDOA无源定位算法[J]. 航空学报, 2019, 40(9): 322902-322902.
[2] 喻思琪, 张小红, 郭斐, 李昕, 潘林, 马福建. 卫星导航进近技术进展[J]. 航空学报, 2019, 40(3): 22200-022200.
[3] 逯志宇, 王建辉, 巴斌, 王大鸣. 修正容积卡尔曼滤波数据域直接定位算法[J]. 航空学报, 2018, 39(9): 322031-322038.
[4] 冯亚洲, 任军学, 梁永收, 刘明山. 多目标约束的精锻叶片几何重构优化算法[J]. 航空学报, 2018, 39(7): 421844-421844.
[5] 郭云飞, 张沛男, 才智. 基于DP-SA的机载外辐射源无源协同定位[J]. 航空学报, 2018, 39(7): 321835-321835.
[6] 樊伟, 郑联语, 王亚辉, 刘新玉. 管路组件可重构装配工装系统的定位器自动配置与性能分析[J]. 航空学报, 2018, 39(5): 421793-421793.
[7] 尹洁昕, 王鼎, 吴瑛, 刘瑞瑞. 直达与非直达环境中的多目标解耦直接定位方法[J]. 航空学报, 2018, 39(2): 321338-321338.
[8] 刘燕, 袁莹涛, 郭翔, 索涛, 李玉龙, 于起峰. 大气折射对电视制导导弹定位精度的影响分析[J]. 航空学报, 2018, 39(12): 322248-322248.
[9] 崔康, 汪文虎, 蒋睿嵩, 赵德中, 靳淇超. 基于力约束的空心涡轮叶片陶芯定位方法[J]. 航空学报, 2017, 38(9): 421209-421209.
[10] 王鼎, 尹洁昕, 吴志东, 刘瑞瑞. 一种基于多普勒频率的恒模信号直接定位方法[J]. 航空学报, 2017, 38(9): 321084-321084.
[11] 曾庆化, 潘鹏举, 刘建业, 王云舒, 刘昇. 惯性信息辅助的大视角目标快速精确定位[J]. 航空学报, 2017, 38(8): 321171-321171.
[12] 李万春, 彭吴可, 彭丽, 马叶子, 李英祥. WGS-84模型下时差频差半定规划定位算法[J]. 航空学报, 2017, 38(7): 320843-320843.
[13] 张玮, 王志国, 谭昌柏, 刘霞. 基于夹具主动定位补偿的飞机柔性件装配偏差优化方法[J]. 航空学报, 2017, 38(6): 420862-420862.
[14] 朱颖童, 董春曦, 董阳阳, 许锦, 赵国庆. 去中心化时差频差直接定位方法[J]. 航空学报, 2017, 38(5): 320727-320727.
[15] 李正, 张海, 王伟扬. 一种基于相对位置约束的双星定位方法[J]. 航空学报, 2017, 38(5): 320503-320503.
[1] LIU Shi-bin. Study on Automatic Magnetic Deviation Compensation  of Magnetic Heading Measurement for UAV[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(2): 411 -414 .
[2] Zhang Yanjun;Chen Aixin. Design and Realization of Ka-band High-gain Circularly Polarized Airborne Microstrip Antenna Array[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(6): 1245 -1249 .
[3] Dong Yanfei;Wang Liyuan;Zhang Hengxi. Synthesized Index Model for Fighter Plane Air-to-surface Target Attacking Effectiveness Assessment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(6): 1374 -1377 .
[4] Li Huili;Lang Lihui;Jiao Wei;Zhang Jianyong;Wu Xiaoping. Instability of Large-scale Isoshear Stress Wire-winding Prestressed Cylinder[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(10): 2062 -2067 .
[5] Bu Kun;Dong Yiwei;Yao Changfeng;Zhang Dinghua. Numerical Simulation Analysis of Displacement Field for Investment Casting[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(1): 165 -170 .
[6] Chen Jizheng;Yuan Jianping;Fang Qun. Attitude Estimation Algorithm Based on Rodrigues Parameter[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2008, 29(4): 960 -965 .
[7] Zhai Weiwei;Zhang Gong;Liu Wenbo. Study of Reduced-rank STAP Based on Estimation of Clutter Subspace for MIMO Radar[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(9): 1824 -1831 .
[8] Zhang Shaojie;Hu Shousong. Neural Network Based Robust Adaptive Control for MIMO  Nonlinear Minimum Phase Systems[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2008, 29(5): 1302 -1307 .
[9] Wang Zhiqiang;Hu Jun;Wang Yingfeng;Zhai Xianchao. Aerodynamic Design of Low-speed Model Compressor for Low-speed Model Testing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(4): 715 -723 .
[10] LIU Gang;WANG Xing-ren;JIA Rong-zhen. Technique for Dynamic Virtual Prototype of Aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2005, 26(5): 550 -555 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed