Three-Dimensional thermoacoustic instability analysis in a multi-nozzle combustor

  • HUANG Yi-Sha ,
  • WANG Xiao-Yu ,
  • QIN Lei ,
  • ZHANG Guang-Yu ,
  • CHENG Rong-Hui ,
  • SUN Xiao-Feng
Expand

Received date: 2025-01-26

  Revised date: 2025-04-11

  Online published: 2025-04-17

Abstract

Thermoacoustic instability poses a significant challenge to the operational safety and stability of multi-nozzle combustors in both aero-engines and industrial gas turbines. To achieve a comprehensive understanding and effective control of this phenomenon, this paper employs a three-dimensional Green's function method to characterize the geometric and thermal response differences among multiple nozzles, aiming to reveal the key parameters influencing three-dimensional thermo-acoustic instability and the control effects of combining different types of nozzles. The study focuses on analyzing the impact of the average temperature of the combustion chamber, axial length of nozzles, and inlet boundary conditions of nozzles on the azimuthal, radial, and axial modal thermoacoustic instability. The results indicate that when the axial length of nozzles approximates an odd multiple of a quarter wavelength, the thermoacoustic instability evolves gradually; in con-trast, when it approaches an integer multiple of a half wavelength, an abrupt shift in the instability state occurs. Moreover, the inlet boundary conditions of nozzles affect the stability of thermoacoustic modes by altering the acoustic energy dis-sipation at the inlet and the phase difference between sound pressure and unsteady heat release rate. By leveraging the identified patterns of key parameters, adjusting the geometric structure and heat source response of some nozzles can effectively control three-dimensional unstable modes. Moreover, coordinated adjustments of multiple parameters can significantly enhance the control of first-order axial mode thermoacoustic instability across a broader parameter spectrum.

Cite this article

HUANG Yi-Sha , WANG Xiao-Yu , QIN Lei , ZHANG Guang-Yu , CHENG Rong-Hui , SUN Xiao-Feng . Three-Dimensional thermoacoustic instability analysis in a multi-nozzle combustor[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 0 : 1 -0 . DOI: 10.7527/S1000-6893.2025.31843

References

[1]LIEUWEN T C, YANG V.Combustion instabilities in gas turbine engines: Operational Experience, funda-mental mechanisms and modeling[M]. Reston: AIAA, 2005: 3-12.
[2]李磊, 孙晓峰.推进动力系统燃烧不稳定性产生的机理、预测及控制方法[J].推进技术, 2010, 31(6):710-720
[3]LI L, SUN X F.Mechanism,prediction and control method of combustion instability in propulsion sys-tem[J].Journal of Propulsion Technology, 2010, 31(6):710-720
[4]孙晓峰, 张光宇, 王晓宇等.航空发动机燃烧不稳定性预测及控制研究进展[J].航空学报, 2023, 44(14):628733-1-628733-23
[5]SUN X F, ZHANG G Y, WANG X Y, et al.Research progress in aero-engine combustion instability predic-tion and control[J].Acta Aeronautica et Astronautica Sinica, 2023, 44(14):628733-1-628733-23
[6]柳伟杰.燃气轮机燃烧室多喷嘴预混燃烧特性研究[D]. 上海: 上海交通大学, 2017: 1-10.
[7]LIU W J.Study on the characteristics of premixed multi-nozzle combustion in a gas turbine model com-bustor[D]. Shanghai: Shanghai Jiao Tong University, 2017: 1-10 (in Chinese).
[8]丁阳, 石永锋, 郝建刚.燃机燃烧系统燃烧特性分析[J].中国电力, 2019, 52(12):165-170
[9]DING Y, SHI Y F, HAO J G.Analysis of combustion characteristics of GE DLN26 combustion system[J].Electric Power, 2019, 52(12):165-170
[10]OH J, KIM M, YOON Y.The tuning methodology of a GE 7FA+e DLN-2.6 gas turbine combustor[J].Applied Thermal Engineering, 2012, 36:14-20
[11]BIGONGIARI A, HECKL M A.A Green’s function approach to the rapid prediction of thermoacoustic in-stabilities in combustors[J].Journal of Fluid Mechanics, 2016, 789:970-996
[12]DOWLING A P.The calculation of thermoacoustic oscillations[J].Journal of Sound and Vibration, 1995, 180(4):557-581
[13]YOU D, SUN X, YANG V.A three-dimensional linear acoustic analysis of gas turbine combustion instabil-ity[C]//41st Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2003: 118.
[14]YANG D, LAERA D, MORGANS A S.A systematic study of nonlinear coupling of thermoacoustic modes in annular combustors[J].Journal of Sound and Vibration, 2019, 456:137-161
[15]ZINN B T, LORES M E.Application of the Galerkin method in the solution of non-linear axial combustion instability problems in liquid rockets[J].Combustion Science and Technology, 1971, 4(1):269-278
[16]KANDALA S S, MADURI A, VYASARAYANI C P.Galerkin approximations for thermoacoustic instabil-ity in a Rijke' s tube[J].Procedia IUTAM, 2017, 22:168-175
[17]ORCHINI A, MOECK J P.Weakly nonlinear analysis of thermoacoustic oscillations in can-annular combustors[J].Journal of Fluid Mechanics, 2024, 980: A52., 2024, 980:A52-1-A52-28
[18]MARIAPPAN S, SUJITH R I.Modelling nonlinear thermoacoustic instability in an electrically heated Rijke tube[[J].Journal of Fluid Mechanics, 2011, 680:511-533
[19]BAUERHEIM M, PARMENTIER J F, SALAS P, et al.An analytical model for azimuthal thermoacoustic modes in an annular chamber fed by an annular ple-num[J].Combustion and Flame, 2014, 161(5):1374-1389
[20]ACHARYA V, LIEUWEN T C.Effects of transverse nozzle location on high-frequency transverse combus-tion instabilities in can combustors[C]//Spring Tech-nical Meeting of the Eastern States Section of the Combustion Institute. State College, PA, Combustion Institute, 2018: 4-7.
[21]ACHARYA V, LIEUWEN T.Optimum multinozzle configuration for ninimizing the rayleigh integral dur-ing high-frequency transverse instabilities[J].Journal of Engineering for Gas Turbines and Power, 2022, 144(3):031002-1-031002-8
[22]YOON M.Thermoacoustics of multi-burner combustors with plenum and chamber cross-talk[J].Journal of Sound and Vibration, 2022, 520: 116623., 2022, 520:116623-1-116623-26
[23]HECKL M A, HOWE M S.Stability analysis of the Rijke tube with a Green's function approach[J].Jour-nal of Sound and Vibration, 2007, 305(4-5):672-688
[24]WANG X, HECKL M.3-D thermoacoustic instability analysis based on Green' s function approach[J].Journal of Sound and Vibration, 2022, 537:116816-1-116816-28
[25]QIN L, WANG X, ZHANG G, et al.Control of azi-muthal combustion instability through the injector mounting surface of annular combustors[J].AIAA Journal, 2023, 61(2):3795-3809
[26]CROCCO L.Aspects of combustion stability in liquid propellant rocket motors part I: fundamentalslow frequency instability with monopropellants[J].Journal of the American Rocket Society, 1951, 21(6):163-178
[27]CANDEL S, DUROX D, SCHULLER T, et al.Dy-namics of swirling flames[J].Annual review of fluid mechanics, 2014, 46(1):147-173
[28]LüCKOFF F, KAISER T L, PASCHEREIT C O, et al.Mean field coupling mechanisms explaining the im-pact of the precessing vortex core on the flame trans-fer function[J].Combustion and Flame, 2021, 223:254-266
[29]LIGHTHILL M J.On sound generated aerodynami-cally IGeneral theory[J].Proceedings of the Royal Society of London. Series A. Mathematical and Physi-cal Sciences, 1952, 211(1107):564-587
[30]FFOWCS WILLIAMS J E, HAWKINGS D L.Sound generation by turbulence and surfaces in arbitrary mo-tion[J].Philosophical Transactions of the Royal Socie-ty of London. Series A, Mathematical and Physical Sciences, 1969, 264(1151):321-342
[31]OH J S, KIM M K, HEO P W, et al.GE 7FA+e DLN26 gas turbine combustor: part ii design of lab scale dump combustor[J].Journal of the Kore-an Society of Propulsion Engineers, 2008, 12(5):51-59
[32]ZHEN H S, CHOY Y S, LEUNG C W, et al.Effects of nozzle length on flame and emission behaviors of multi-fuel-jet inverse diffusion flame burner[J].Ap-plied Energy, 2011, 88(9):2917-2924
[33]RAYLEIGH L.The explanation of certain acoustical phenomena[J].Nature, 1878, 18(455):319-321
Outlines

/