Fluid Mechanics and Flight Mechanics

Research progress and outlook of plasma combustion control

  • Yun WU ,
  • Zhibo ZHANG ,
  • Yifei ZHU ,
  • Min JIA ,
  • Yinghong LI
Expand
  • 1.National Key Lab of Aerospace Power System and Plasma Technology,Aviation Engineering School,Air Force Engineering University,Xi’an 710038,China
    2.National Key Lab of Aerospace Power System and Plasma Technology,School of Mechanical Engineering,Xi’an Jiaotong University,Xi’an 710049,China

Received date: 2025-02-17

  Revised date: 2025-02-20

  Accepted date: 2025-02-21

  Online published: 2025-03-15

Supported by

National Natural Science Foundation of China(52488101)

Abstract

The research on the application of plasmas in combustion chambers has been conducted over a century. Spark discharge plasma ignition technology is very mature, while the study of plasma combustion control for advanced engines is currently flourishing. Plasma combustion control technology plays a significant role in broadening the ignition and extinction boundaries of engines, enhancing combustion efficiency, and suppressing combustion instability. The mechanism of plasma combustion control, as an interdisciplinary frontier of plasma dynamics and combustion science, is rich in scientific connotations. This article reviews the research progress on plasma combustion control from two aspects: technology innovation and mechanism exploration. With respect to technology innovation, based on the development ideas of plasma actuation systems and the control effect, the research progress of various plasma combustion control methods is summarized, such as spark, arc, gliding arc, plasma torch, laser plasma, and nanosecond discharge techniques. With respect to mechanism exploration, the three main fundamental principles of thermal effects, chemical effects, and transport effects are analyzed, and the progress of plasma actuation reaction mechanisms for typical fuels, as well as the development of zero-dimensional, multi-dimensional, and phenomenological plasma combustion modelling and simulation models, are summarized. Finally, the outlook of future development of plasma combustion control is discussed. The innovation and exploration of plasma combustion control technology will further integrate and develop to satisfy the needs of advanced combustion chambers such as high-temperature-rise combustion chambers, wide-range afterburning combustion chambers, and wide-range supersonic combustion chambers, promoting the innovation and application of new types of plasma combustion control technologies. The plasma combustion control mechanism needs to be explored systematically and in depth, developing towards the emerging interdisciplinary field of plasma-excited combustion science. Additionally, the plasma combustion control of low-carbon and zero-carbon fuels, as well as plasma-assisted energy conversion, is becoming research hotspots.

Cite this article

Yun WU , Zhibo ZHANG , Yifei ZHU , Min JIA , Yinghong LI . Research progress and outlook of plasma combustion control[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(5) : 531879 -531879 . DOI: 10.7527/S1000-6893.2025.31879

References

1 LI M Z, WANG Z K, XU R G, et al. Advances in plasma-assisted ignition and combustion for combustors of aerospace engines[J]. Aerospace Science and Technology2021117: 106952.
2 CAI Z, WANG T Y, SUN M B. Review of cavity ignition in supersonic flows[J]. Acta Astronautica2019165: 268-286.
3 于锦禄, 黄丹青, 王思博, 等. 等离子体点火与助燃技术在航空发动机上的应用[J]. 航空发动机201844(3): 12-20.
  YU J L, HUANG D Q, WANG S B, et al. Application of plasma ignition and assisted combustion of aeroengine[J]. Aeroengine201844(3): 12-20 (in Chinese).
4 李应红, 吴云. 等离子体激励调控流动与燃烧的研究进展与展望[J]. 中国科学: 技术科学202050(10): 1252-1273.
  LI Y H, WU Y. Research progress and outlook of flow control and combustion control using plasma actuation[J]. Scientia Sinica (Technologica)202050(10): 1252-1273 (in Chinese).
5 吴云, 李应红. 等离子体流动控制与点火助燃研究进展[J]. 高电压技术201440(7): 2024-2038.
  WU Y, LI Y H. Progress in research of plasma-assisted flow control, ignition and combustion?[J]. High Voltage Engineering201440(7): 2024-2038 (in Chinese).
6 LEMPERT W R. An overview or the AFOSR plasma assisted combustion MURI program?[C]∥53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015.
7 STARIKOVSKIY A, ALEKSANDROV N. Plasma-assisted ignition and combustion?[J]. Progress in Energy and Combustion Science201339(1): 61-110.
8 JU Y G, SUN W T. Plasma assisted combustion: Dynamics and chemistry?[J]. Progress in Energy and Combustion Science201548: 21-83.
9 JU Y G, LEFKOWITZ J K, REUTER C B, et al. Plasma assisted low temperature combustion?[J]. Plasma Chemistry and Plasma Processing201636(1): 85-105.
10 李奕新, 谭航, 杨水银. 航空发动机电点火系统现状与发展趋势[J]. 燃气涡轮试验与研究201528(6): 49-54.
  LI Y X, TAN H, YANG S Y. An initial study on the current development and derivatives of the electric ignition system of aero-engine?[J]. Gas Turbine Experiment and Research201528(6): 49-54 (in Chinese).
11 BALLAL D R, LEFEBVRE A H. Ignition and flame quenching of quiescent fuel mists?[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences1978364(1717): 277-294.
12 BALLAL D R, LEFEBVRE A H. The influence of spark discharge characteristics on minimum ignition energy in flowing gases[J]. Combustion and Flame197524: 99-108.
13 KELLEY A P, JOMAAS G, LAW C K. Critical radius for sustained propagation of spark-ignited spherical flames[J]. Combustion and Flame2009156(5): 1006-1013.
14 CHEN Z, BURKE M P, JU Y G. On the critical flame radius and minimum ignition energy for spherical flame initiation?[J]. Proceedings of the Combustion Institute201133(1): 1219-1226.
15 ZHANG Z B, WU Y, SUN Z Z, et al. Experimental research on multichannel discharge circuit and multi-electrode plasma synthetic jet actuator?[J]. Journal of Physics D: Applied Physics201750(16): 165205.
16 ZHANG Z B, WU Y, JIA M, et al. The multichannel discharge plasma synthetic jet actuator?[J]. Sensors and Actuators A: Physical2017253: 112-117.
17 ZHANG Z B, WU Y, JIA M, et al. Modeling and optimization of the multichannel spark discharge?[J]. Chinese Physics B201726(6): 065204.
18 LIN B X, WU Y, ZHANG Z B, et al. Multi-channel nanosecond discharge plasma ignition of premixed propane/air under normal and sub-atmospheric pressures[J]. Combustion and Flame2017182: 102-113.
19 LIN B X, WU Y, ZHANG Z B, et al. Ignition enhancement of lean propane/air mixture by multi-channel discharge plasma under low pressure?[J]. Applied Thermal Engineering2019148: 1171-1182.
20 HUANG S F, SONG H M, WU Y, et al. Experimental investigation on electrical characteristics and ignition performance of multichannel plasma igniter?[J]. Chinese Physics B201827(3): 035203.
21 LIN B X, WU Y, XU M X, et al. Experimental investigation on high-altitude ignition and ignition enhancement by multi-channel plasma igniter?[J]. Plasma Chemistry and Plasma Processing202141(5): 1435-1454.
22 HUANG S F, WU Y, SONG H M, et al. Experimental investigation of multichannel plasma igniter in a supersonic model combustor?[J]. Experimental Thermal and Fluid Science201899: 315-323.
23 CAI B H, SONG H M, WU Y, et al. Experimental investigation on swirling spray forced ignition of embedded multi-channel plasma igniter?[J]. Acta Astronautica2021179: 670-679.
24 CAI B H, SONG H M, ZHANG Z B, et al. Experimental investigation of C-shape embedded multi-channel plasma igniter in a single-head swirl combustor[J]. Journal of Physics D Applied Physics202154(13): 135201.
25 MIAO H F, ZHANG Z B, JIA M, et al. Ignition enhancement of lean kerosene air mixture by multichannel jet enhanced plasma igniter?[J]. Aerospace Science and Technology2021117: 106954.
26 ZHAO H, ZHAO N B, ZHANG T H, et al. Studies of multi-channel spark ignition of lean n-pentane/air mixtures in a spherical chamber[J]. Combustion and Flame2020212: 337-344.
27 HAN X Y, YU S, TONG J, et al. Study of an innovative three-pole igniter to improve efficiency and stability of gasoline combustion under charge dilution conditions[J]. Applied Energy2020257: 113999.
28 YU S, XIE K, YU X, et al. High energy ignition strategies for diluted mixtures via a three-pole igniter?[C]?∥SAE Technical Paper Series, 2016.
29 NAKAMURA T, TAKAHASHI E, NISHIOKA M, et al. Long gap spark discharge ignition using a boron-doped diamond electrode?[J]. Journal of Physics D: Applied Physics202154(40): 405204.
30 ZHU Z F, LI B, GAO Q, et al. Long-gap ignition using femtosecond laser filament-triggered discharge?[J]. Optics & Laser Technology2022156: 108611.
31 中国人民解放军总装备部. 航空涡轮发动机电点火系统通用规范 [S]. 北京: 中国人民解放军总装备部, 2007.
  Chinese People’?s Liberation Army General Armament Department. General specification for electromechanical ignition systems of Aviation turbine engines [S]. Beijing: Chinese People’?s Liberation Army General Armament Department, 2007 (in Chinese).
32 孙旭, 苏建仓, 张喜波, 等. 气体火花开关电阻特性[J]. 强激光与粒子束201224(4): 843-846.
  SUN X, SU J C, ZHANG X B, et al. Resistance properties of gas spark switch?[J]. High Power Laser and Particle Beams201224(4): 843-846 (in Chinese).
33 MIAO H F, ZHANG Z B, WU Y, et al. A self-trigger three-electrode plasma synthetic jet actuator?[J]. Sensors and Actuators A: Physical2021332: 113174.
34 MIAO H F, ZHANG Z B, HE Y Y, et al. Ignition enhancement of liquid kerosene by a novel high-energy spark igniter in scramjet combustor at Mach 4 flight condition?[J]. Aerospace Science and Technology2023139: 108397.
35 MIAO H F, ZHANG Z B, ZHENG X, et al. Investigation on ignition enhancement characteristics by high-energy spark in a scramjet combustor under low flight Mach conditions?[J]. Aerospace Science and Technology2024155: 109681.
36 GAO Z Y, ZHANG M, ZHANG Z B, et al. Numerical study of high-energy spark ignition characteristics in a scramjet combustor[J]. Case Studies in Thermal Engineering202463: 105403.
37 LEONOV S, YARANTSEV D, NAPARTOVICH A, et al. Plasma-assisted ignition and flameholding in high-speed flow?[C]∥44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
38 LEONOV S, YARANTSEV D, CARTER C. Experiments on electrically controlled flameholding on a plane wall in a supersonic airflow?[J]. Journal of Propulsion and Power200925(2): 289-294.
39 FIRSOV A A, DOLGOV E V, LEONOV S B. Effect of DC-discharge geometry on ignition efficiency in supersonic flow?[J]. Journal of Physics: Conference Series20181112: 012011.
40 LEONOV S B, ELLIOTT S, CARTER C, et al. Modes of plasma-stabilized combustion in cavity-based M=2 configuration?[J]. Experimental Thermal and Fluid Science2021124: 110355.
41 FIRSOV A, SAVELKIN K V, YARANTSEV D A, et al. Plasma-enhanced mixing and flameholding in supersonic flow?[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences2015373(2048): 20140337.
42 LEONOV S, YARANTSEV D, SABELNIKOV V. Electrically driven combustion near the plane wall in a supersonic duct?[C]∥Progress in Propulsion Physics, 2011.
43 LEONOV S, FIRSOV A, YARANTSEV D, et al. Temperature measurement in plasma-assisted combustor by TDLAS?[C]?∥43rd AIAA Plasmadynamics and Lasers Conference. Reston: AIAA, 2012.
44 SAVELKIN K V, YARANTSEV D A, ADAMOVICH I V, et al. Ignition and flameholding in a supersonic combustor by an electrical discharge combined with a fuel injector[J]. Combustion and Flame2015162(3): 825-835.
45 LEONOV S B, HOUPT A W, HEDLUND B E. Experimental study of ignition, reignition and flameholding by Q-DC electrical discharge in a model scramjet[C]?∥48th AIAA Plasmadynamics and Lasers Conference. Reston: AIAA, 2017.
46 ELLIOTT S, LAX P, LEONOV S B, et al. Acetone PLIF visualization of the fuel distribution at plasma-enhanced supersonic combustion?[J]. Experimental Thermal and Fluid Science2022136: 110668.
47 FENG R, LI J, WU Y, et al. Experimental investigation on gliding arc discharge plasma ignition and flame stabilization in scramjet combustor?[J]. Aerospace Science and Technology201879: 145-153.
48 FENG R, ZHU J J, WANG Z G, et al. Dynamic characteristics of a gliding arc plasma-assisted ignition in a cavity-based scramjet combustor?[J]. Acta Astronautica2020171: 238-244.
49 FENG R, HUANG Y H, ZHU J J, et al. Ignition and combustion enhancement in a cavity-based supersonic combustor by a multi-channel gliding arc plasma?[J]. Experimental Thermal and Fluid Science2021120: 110248.
50 FENG R, SUN M B, WANG H B, et al. Experimental investigation of flameholding in a cavity-based scramjet combustor by a multi-channel gliding arc?[J]. Aerospace Science and Technology2022121: 107381.
51 TIAN Y F, ZHU J J, SUN M B, et al. Enhancement of blowout limit in a Mach 2.92 cavity-based scramjet combustor by a gliding arc discharge?[J]. Proceedings of the Combustion Institute202339(4): 5697-5705.
52 FENG R, WANG Z G, SUN M B, et al. Multi-channel gliding arc plasma-assisted ignition in a kerosene-fueled model scramjet engine?[J]. Aerospace Science and Technology2022126: 107606.
53 FENG R, ZHU J J, WANG Z G, et al. Suppression of combustion mode transitions in a hydrogen-fueled scramjet combustor by a multi-channel gliding arc plasma?[J]. Combustion and Flame2022237: 111843.
54 KOROLEV Y D, MATVEEV I B. Nonsteady-state processes in a plasma pilot for ignition and flame control[J]. IEEE Transactions on Plasma Science200634(6): 2507-2513.
55 MATVEEV I B, MATVEEVA S A, KIRCHUK E Y, et al. Plasma fuel nozzle as a prospective way to plasma-assisted combustion?[J]. IEEE Transactions on Plasma Science201038(12): 3313-3318.
56 LIN B X, WU Y, ZHU Y F, et al. Experimental investigation of gliding arc plasma fuel injector for ignition and extinction performance improvement?[J]. Applied Energy2019235: 1017-1026.
57 FENG R, LI J, WU Y, et al. Ignition and blow-off process assisted by the rotating gliding arc plasma in a swirl combustor?[J]. Aerospace Science and Technology202099: 105752.
58 耿华东, 陈一, 崔巍, 等. 滑动弧放电等离子体激励的值班火焰头部放电特性实验[J]. 空军工程大学学报(自然科学版)202223(1): 53-63.
  GENG H D, CHEN Y, CUI W, et al. An experiment in discharge characteristics of pilot flame dome based on gliding arc discharge plasma actuation?[J]. Journal of Air Force Engineering University (Natural Science Edition)202223(1): 53-63 (in Chinese).
59 JIA M, LIN D, HUANG S F, et al. Experimental investigation on gliding arc plasma ignition in double-head swirling combustor?[J]. Aerospace Science and Technology2021113: 106726.
60 JIA M, ZHANG Z B, CUI W, et al. Experimental investigation of a gliding discharge plasma jet igniter?[J]. Chinese Journal of Aeronautics202235(6): 116-124.
61 CHENG X Y, SONG H M, HUANG S F, et al. Discharge and jet characteristics of gliding arc plasma igniter driven by pressure difference?[J]. Plasma Science and Technology202224(11): 115502.
62 侯豪豪, 陈一, 屈美娇, 等. 燃烧室减速熄火条件下滑动弧等离子体对火焰演化的影响[J]. 推进技术202546(2): 159-168.
  HOU H H, CHEN Y, QU M J, et al. Effects of gliding arc plasma on flame evolution under combustor deceleration and flameout conditions?[J]. Journal of Propulsion Technology202546(2): 159-168 (in Chinese).
63 HUANG S F, WU Y, ZHANG K, et al. Experimental investigation on spray and ignition characteristics of plasma actuated bluff body flameholder?[J]. Fuel2022309: 122215.
64 CHENG X Y, SONG H M, SUN J L, et al. Experimental investigation on ignition of hyperburner based on gliding arc plasma igniter driven by pressure difference?[J]. Processes202210(9): 1886.
65 ZANG Y X, JIA M, ZHANG Z B, et al. Experimental investigation on gliding arc plasma ignition and assisted combustion actuator?[J]. IEEE Transactions on Plasma Science202351(1): 127-139.
66 林冰轩. 高空极端条件航空发动机等离子体点火助燃基础研究[D]. 西安: 空军工程大学, 2019.
  LIN B X. Research on plasma asssisted ignition and combustion for aero-engines under high-altitude extreme conditions?[D]. Xi’?an: Air Force Engineering University, 2019 (in Chinese).
67 LIN D, JIA M, ZHANG Z B, et al. Experimental investigation of ignition by multichannel gliding arcs in a swirl combustor?[J]. Journal of Physics D: Applied Physics202154(21): 215205.
68 刘磊, 胡长淮, 陈一, 等. 反向和同向旋流滑动弧等离子体点火助燃头部的燃烧特性[J]. 燃烧科学与技术202430(3): 311-322.
  LIU L, HU C H, CHEN Y, et al. Combustion characteristics of reverse and isotropic rotary arc plasma ignition-assisted heads?[J]. Journal of Combustion Science and Technology202430(3): 311-322 (in Chinese).
69 HUANG S F, WU Y, ZHANG K, et al. Experimental investigation of spray characteristics of gliding arc plasma airblast fuel injector[J]. Fuel2021293: 120382.
70 SUN J L, JIN D, HUANG S F, et al. The characteristics of gliding arc plasma and its activating effect for ramjet combustion[J]. Energies202215(12): 4260.
71 CHENG X Y, JIN D, SONG H M, et al. Experimental study on the ignition and assisted combustion of gliding arc plasma for circumferential vapor flameholder in the ramjet combustor?[J]. Applied Thermal Engineering2025263: 125346.
72 胡长淮, 何立明, 陈一, 等. 燃烧室头部激励的等离子体强化燃烧特性实验研究[J]. 推进技术202142(12): 2762-2771.
  HU C H, HE L M, CHEN Y, et al. Experimental research on characteristics of plasma-enhanced combustion excited by combustor dome?[J]. Journal of Propulsion Technology202142(12): 2762-2771 (in Chinese).
73 程伟达, 于锦禄, 陈朝, 等. 基于滑动弧的燃烧室头部强化燃烧特性[J]. 航空动力学报202237(7): 1392-1402.
  CHENG W D, YU J L, CHEN Z, et al. Enhanced combustion characteristics of combustor head based on gliding arc?[J]. Journal of Aerospace Power202237(7): 1392-1402 (in Chinese).
74 ZHANG L, YU J L, SU W H, et al. Characterization of gliding arc plasma ignition in aeroengine swirl combustion chamber[J]. 202436(12): 125112.
75 WANG S B, YU J L, YE J F, et al. Ignition characteristics of pre-combustion plasma jet igniter?[J]. Chinese Physics B201928(11): 114702.
76 YU J L, ZHANG B W, YU Y, et al. Characteristics of a pre-combustion plasma jet igniter[J]. Chinese Journal of Aeronautics202437(7): 178-189.
77 ZHANG L, YU J L, CHENG W D, et al. Study on ignition characteristics of kerosene pre-combustion plasma jet igniter[J]. Physics of Fluids202436(6): 065130.
78 宋少雷, 李雅军, 王玥, 等. 连续弧等离子点火器结构优化研究[J]. 热能动力工程202035(10): 43-50.
  SONG S L, LI Y J, WANG Y, et al. Research on optimization design of continuous plasma igniter[J]. Journal of Engineering for Thermal Energy and Power202035(10): 43-50 (in Chinese).
79 LIU S Z, ZHAO N B, ZHANG J G, et al. Experimental and numerical investigations of plasma ignition characteristics in gas turbine combustors[J]. Energies201912(8): 1511.
80 YOU B C, LIU X, YANG R, et al. Experimental study of gliding arc plasma-assisted combustion in a blast furnace gas fuel model combustor: Flame structures, extinction limits and combustion stability[J]. Fuel2022322: 124280.
81 YOU B C, LIU X, KONG L, et al. Experimental study on direct ignition of blast furnace gas by plasma igniter in a gas turbine combustor?[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science2022236(16): 9306-9315.
82 SUN J G, TANG Y, LI S Q. Plasma-assisted stabilization of premixed swirl flames by gliding arc discharges[J]. Proceedings of the Combustion Institute202138(4): 6733-6741.
83 TANG Y, SUN J G, SHI B L, et al. Extension of flammability and stability limits of swirling premixed flames by AC powered gliding arc discharges?[J]. Combustion and Flame2021231: 111483.
84 KIMURA I, AOKI H, KATO M. The use of a plasma jet for flame stabilization and promotion of combustion in supersonic air flows?[J]. Combustion and Flame198142: 297-305.
85 SATO Y, SAYAMA M, OHWAKI K, et al. Effectiveness of plasma torches for ignition and flameholding in scramjet?[J]. Journal of Propulsion and Power19928(4): 883-889.
86 MASUYA G, KUDOU K, MURAKAMI A, et al. Some governing parameters of plasma torch igniter/flameholder in a scramjet combustor?[J]. Journal of Propulsion and Power19939(2): 176-181.
87 TAKITA K, TAKATORI F, MASUYA G. Effect of plasma torch feedstock on ignition characteristics in supersonic flow?[C]?∥36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2000.
88 MASUYA G, TAKITA K, TAKAHASHI K, et al. Effects of airstream Mach number on H2/N2 plasma igniter[C]∥39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001.
89 KITAGAWA T, MORIWAKI A, MURAKAMI K, et al. Ignition characteristics of methane and hydrogen using a plasma torch in supersonic flow[J]. Journal of Propulsion and Power200319(5): 853-858.
90 MURAKAMI K, NISHIKAWA A, TAKITA K, et al. Ignition characteristics of hydrocarbon fuels by plasma torch in supersonic flow?[C]?∥12th AIAA International Space Planes and Hypersonic Systems and Technologies. Reston: AIAA, 2003.
91 TAKITA K, MURAKAMI K, NAKANE H, et al. A novel design of a plasma jet torch igniter in a scramjet combustor?[J]. Proceedings of the Combustion Institute200530(2): 2843-2849.
92 TAKITA K, NAKANE H, MASUYA G. Optimization of double plasma jet torches in a scramjet combustor[J]. Proceedings of the Combustion Institute200731(2): 2513-2520.
93 TAKITA K, ABE N, MASUYA G, et al. Ignition enhancement by addition of NO and NO2 from a N2/O2 plasma torch in a supersonic flow[J]. Proceedings of the Combustion Institute200731(2): 2489-2496.
94 MATSUBARA Y, TAKITA K. Effect of mixing ratio of N2/O2 feedstock on ignition by plasma jet torch[J]. Proceedings of the Combustion Institute201133(2): 3203-3209.
95 MATSUBARA Y, TAKITA K, MASUYA G. Combustion enhancement in a supersonic flow by simultaneous operation of DBD and plasma jet[J]. Proceedings of the Combustion Institute201334(2): 3287-3294.
96 BARBI E, MAHAN J R, O’BRIEN W F, et al. Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications[J]. Journal of Propulsion and Power19895(2): 129-133.
97 JACOBSEN L, GALLIMORE S, SCHETZ J, et al. An integrated aeroramp injector/plasma-igniter for hydrocarbon fuels in a supersonic flow. I-Experimental studies of the geometric configuration?[C]?∥10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2001.
98 GALLIMORE S, JACOBSEN L, O'BRIEN W, et al. An integrated aeroramp-injector/plasma-igniter for hydrocarbon fuels in supersonic flow. PartB: Experimental studies of the operating conditions?[R]. Reston: AIAA, 2001.
99 ANDERSON C, SCHETZ J, O’BRIEN W. Integrated liquid-fuel-injector/plasma-igniter for scramjets?[C]?∥12th AIAA International Space Planes and Hypersonic Systems and Technologies. Reston: AIAA, 2003.
100 GALLIMORE S D, JACOBSEN L S, O’BRIEN W F, et al. Operational sensitivities of an integrated scramjet ignition/fuel-injection system?[J]. Journal of Propulsion and Power200319(2): 183-189.
101 BONANOS A M, SCHETZ J A, O’BRIEN W F, et al. Dual-mode combustion experiments with an integrated aeroramp-injector/plasma-torch igniter?[J]. Journal of Propulsion and Power200824(2): 267-273.
102 唐井峰, 向安定, 李寄, 等. 等离子体射流作用下光壁面超声速燃烧室点火试验研究[J]. 推进技术202142(11): 2531-2537.
  TANG J F, XIANG A D, LI J, et al. Experimental study on plasma jet enhanced ignition in No-cavity supersonic combustor?[J]. Journal of Propulsion Technology202142(11): 2531-2537 (in Chinese).
103 LI J, TANG J F, ZHANG J L, et al. Flame establishment and flameholding modes spontaneous transformation in kerosene axisymmetric supersonic combustor with a plasma igniter[J]. Aerospace Science and Technology2021119: 107080.
104 LI J, TANG J F, ZHANG H R, et al. Dual-frequency excited plasma enhanced ignition in a supersonic combustion chamber?[J]. Aerospace Science and Technology2022129: 107849.
105 LI J, TANG J F, ZHANG H R, et al. Dual-frequency plasma promoting flameholding in a supersonic combustion chamber?[J]. Aerospace Science and Technology2022127: 107676.
106 李飞, 余西龙, 顾洪斌, 等. 超声速气流中煤油射流的等离子体点火实验[J]. 航空动力学报201227(4): 824-831.
  LI F, YU X L, GU H B, et al. Experiment on kerosene fueled scramjet ignition by using plasma torch[J]. Journal of Aerospace Power201227(4): 824-831 (in Chinese).
107 LI F, YU X L, TONG Y G, et al. Plasma-assisted ignition for a kerosene fueled scramjet at Mach 1.8[J]. Aerospace Science and Technology201328(1): 72-78.
108 BRIESCHENK S, O’BYRNE S, KLEINE H. Visualization of jet development in laser-induced plasmas?[J]. Optics Letters201338(5): 664.
109 BRIESCHENK S, KLEINE H, O’BYRNE S. Laser ignition of hypersonic air-hydrogen flow[J]. Shock Waves201323(5): 439-452.
110 BRIESCHENK S, O’BYRNE S, KLEINE H. Laser-induced plasma ignition studies in a model scramjet engine?[J]. Combustion and Flame2013160(1): 145-148.
111 BRIESCHENK S, O’BYRNE S, KLEINE H. Ignition characteristics of laser-ionized fuel injected into a hypersonic crossflow?[J]. Combustion and Flame2014161(4): 1015-1025.
112 LI X P, LIU W D, PAN Y, et al. Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions?[J]. Acta Astronautica2017138: 79-84.
113 LIU C Y, SUN M B, WANG H B, et al. Ignition and flame stabilization characteristics in an ethylene-fueled scramjet combustor?[J]. Aerospace Science and Technology2020106: 106186.
114 KANTROWITZ A. Propulsion to orbit by ground-based lasers[J]. Acta Astronautica197210: 74-76.
115 BAK M S, CAPPELLI M A. Successive laser ablation ignition of premixed methane/air mixtures[J]. Optics Express201523(11): A419-A427.
116 TAKAHASHI E, KATO S. Laser ablation ignition of flammable gas?[J]. Japanese Journal of Applied Physics202160(4): 047001.
117 LIANG T F, ZANG H W, ZHANG W, et al. Reliable laser ablation ignition of combustible gas mixtures by femtosecond filamentating laser?[J]. Fuel2022311: 122525.
118 TIAN Y F, CAI Z, SUN M B, et al. Ignition characteristics of scramjet combustor with laser ablation and laser-induced breakdown[J]. Journal of Propulsion and Power202238(5): 799-808.
119 LIU J B, RONNEY P, KUTHI A, et al. Transient plasma ignition for lean burn applications[C]∥41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
120 LIU J B, WANG F, LEE L, et al. Effect of fuel type on flame ignition by transient plasma discharges[C]?∥42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004.
121 LIU J B, WANG F, LEE L, et al. Effect of discharge energy and cavity geometry on flame ignition by transient plasma?[C]?∥42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004.
122 SINGLETON D R, GUNDERSEN M A. Transient plasma fuel-air ignition?[J]. IEEE Transactions on Plasma Science201139(11): 2214-2215.
123 Transient Plasma Systems[DB/OL]. [2025-02-17]. .
124 Home-TPS Ignition[DB/OL]. [2025-02-17]. .
125 PILLA G, GALLEY D, LACOSTE D A, et al. Stabilization of a turbulent premixed flame using a nanosecond repetitively pulsed plasma?[J]. IEEE Transactions on Plasma Science200634(6): 2471-2477.
126 LACOSTE D A, MOECK J P, DUROX D, et al. Effect of nanosecond repetitively pulsed discharges on the dynamics of a swirl-stabilized lean premixed flame?[J]. Journal of Engineering for Gas Turbines and Power2013135(10): 101501.
127 BARBOSA S, PILLA G, LACOSTE D A, et al. Influence of nanosecond repetitively pulsed discharges on the stability of a swirled propane/air burner representative of an aeronautical combustor?[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences2015373(2048): 20140335.
128 CAMPO F, WEIBEL D. Stability enhancements to a lean, premixed gas turbine fuel injector using a nanosecond pulsed plasma discharge[R]. 2016.
129 DEL CAMPO F G. Plasma-assisted control of combustion instabilities in low-emissions combustors at realistic conditions?[C]?∥AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019.
130 DEL CAMPO F G. Design of a high pressure, optically accessible flame tube for plasma-assisted combustion studies[C]?∥AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019.
131 SHANBOGUE S, WEIBEL D, DEL CAMPO F G, et al. Active control of large amplitude combustion oscillations using nanosecond repetitively pulsed plasmas[C]?∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022.
132 赵庆武, 程勇, 杨雪, 等. 高重频纳秒脉冲放电点火系统设计[J]. 吉林大学学报(工学版)202151(2): 414-421.
  ZHAO Q W, CHENG Y, YANG X, et al. A high-frequency nanosecond-pulsed ignition system for plasma assisted ignition and combustion?[J]. Journal of Jilin University (Engineering and Technology Edition)202151(2): 414-421 (in Chinese).
133 刘静远, 王宁, 赵庆武, 等. 纳秒脉冲放电参数对点火性能的影响[J]. 上海交通大学学报202256(1): 28-34.
  LIU J Y, WANG N, ZHAO Q W, et al. Effect of nanosecond pulse discharge parameters on ignition performance?[J]. Journal of Shanghai Jiao Tong University202256(1): 28-34 (in Chinese).
134 ZHAO Q W, XIONG Y, YANG X, et al. Experimental study on multi-channel ignition of propane-air by transient repetitive nanosecond surface dielectric barrier discharge[J]. Fuel2022324: 124723.
135 SUN W T, WON S H, JU Y G. In situ plasma activated low temperature chemistry and the S-curve transition in DME/oxygen/helium mixture?[J]. Combustion and Flame2014161(8): 2054-2063.
136 JU Y G, XU B. Theoretical and experimental studies on mesoscale flame propagation and extinction[J]. Proceedings of the Combustion Institute200530(2): 2445-2453.
137 JU Y G. Understanding cool flames and warm flames[J]. Proceedings of the Combustion Institute202138(1): 83-119.
138 WON S H, JIANG B, DIéVART P, et al. Self-sustaining n-heptane cool diffusion flames activated by ozone?[J]. Proceedings of the Combustion Institute201535(1): 881-888.
139 LEFKOWITZ J K, GUO P, ROUSSO A, et al. Species and temperature measurements of methane oxidation in a nanosecond repetitively pulsed discharge[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences2015373(2048): 20140333.
140 CHEN H D, ZHANG R Z, LIAO H D, et al. Kinetic insights into plasma-assisted low-temperature oxidation of propane with synchrotron photoionization mass spectrometry[J]. Proceedings of the Combustion Institute202339(4): 5499-5509.
141 WüRMEL J, SIMMIE J M. CFD studies of a twin-piston rapid compression machine?[J]. Combustion and Flame2005141(4): 417-430.
142 CROCHET M, MINETTI R, RIBAUCOUR M, et al. A detailed experimental study of n-propylcyclohexane autoignition in lean conditions[J]. Combustion and Flame2010157(11): 2078-2085.
143 POPOV N A, STARIKOVSKAIA S M. Relaxation of electronic excitation in nitrogen/oxygen and fuel/air mixtures: Fast gas heating in plasma-assisted ignition and flame stabilization?[J]. Progress in Energy and Combustion Science202291: 100928.
144 POPOV N A. Fast gas heating in a nitrogen–oxygen discharge plasma: I. Kinetic mechanism[J]. Journal of Physics D: Applied Physics201144(28): 285201.
145 MONTELLO A, YIN Z, BURNETTE D, et al. Picosecond CARS measurements of nitrogen vibrational loading and rotational/translational temperature in nonequilibrium discharges?[C]?∥43rd AIAA Plasmadynamics and Lasers Conference. Reston: AIAA, 2012.
146 BARLEON N. Detailed modeling and simulations of nanosecond repetitively pulsed discharges for plasma-assisted combustion?[D]. Toulouse: Institut National Polytechnique de Toulouse, 2022.
147 WANG L, MEBEL A M, YANG X M, et al. Ab initio/RRKM study of the O(1D)+NH3 reaction: Prediction of product branching ratios?[J]. The Journal of Physical Chemistry A2004108(52): 11644-11650.
148 MEI B W, ZHANG X Y, MA S Y, et al. Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions[J]. Combustion and Flame2019210: 236-246.
149 MAO X Q, ROUSSO A, CHEN Q, et al. Numerical modeling of ignition enhancement of CH4/O2/He mixtures using a hybrid repetitive nanosecond and DC discharge?[J]. Proceedings of the Combustion Institute201937(4): 5545-5552.
150 MAO X Q, CHEN Q, ROUSSO A C, et al. Effects of controlled non-equilibrium excitation on H2/O2/He ignition using a hybrid repetitive nanosecond and DC discharge[J]. Combustion and Flame2019206: 522-535.
151 TANEJA T S, JOHNSON P N, YANG S. Nanosecond pulsed plasma assisted combustion of ammonia-air mixtures: Effects on ignition delays and NO x emission[J]. Combustion and Flame2022245: 112327.
152 WANG Y, GUO P, CHEN H T, et al. Numerical modeling of ignition enhancement using repetitive nanosecond discharge in a hydrogen/air mixture I: Calculations assuming homogeneous ignition[J]. Journal of Physics D: Applied Physics202154(6): 065501.
153 MAO X Q, ZHONG H T, ZHANG T H, et al. Modeling of the effects of non-equilibrium excitation and electrode geometry on H2/air ignition in a nanosecond plasma discharge?[J]. Combustion and Flame2022240: 112046.
154 FONTANAROSA D, MEHDI G, DE GIORGI M G, et al. Assessment of the impact of nanosecond plasma discharge on the combustion of methane air flames[J]. E3S Web of Conferences2020197: 10001.
155 BAN Y Y, ZHANG F, ZHONG S H, et al. The numerical simulation of nanosecond-pulsed discharge-assisted ignition in lean-burn natural gas HCCI engines[J]. Frontiers in Mechanical Engineering20228: 930109.
156 LI S, BAI C J, CHEN X X, et al. Numerical investigation on plasma assisted ignition of methane/air mixture excited by the synergistic nanosecond repetitive pulsed and DC discharge?[J]. Journal of Physics D: Applied Physics202154(1): 015203.
157 JOHNSON P N, TANEJA T S, YANG S. Plasma-based global pathway analysis to understand the chemical kinetics of plasma-assisted combustion and fuel reforming[J]. Combustion and Flame2023255: 112927.
158 SUZUKI M, MORII Y, NAKAMURA H, et al. Effect of computational constraints on zero-dimensional computations for the nanosecond-order ignition process of the CH4/air mixture[J]. Combustion, Explosion, and Shock Waves202157(4): 424-432.
159 SUN J T, CHEN Q, ZHAO B M, et al. Temperature-dependent ion chemistry in nanosecond discharge plasma-assisted CH4 oxidation[J]. Journal of Physics D: Applied Physics202255(13): 135203.
160 DEAK N, BELLEMANS A, BISETTI F. Plasma-assisted ignition of methane/air and ethylene/air mixtures: Efficiency at low and high pressures?[J]. Proceedings of the Combustion Institute202138(4): 6551-6558.
161 FAINGOLD G, LEFKOWITZ J K. A numerical investigation of NH3/O2/He ignition limits in a non-thermal plasma?[J]. Proceedings of the Combustion Institute202138(4): 6661-6669.
162 QIU Y, ZHU Y, WU Y, et al. Numerical investigation of the hybrid pulse–DC plasma assisted ignition and NO[formula omitted] emission of NH[formula omitted]/N[formula omitted]/O[formula omitted] mixture?[J]. Combustion and Flame2023258: 1-11.
163 MAO X Q, ZHONG H T, LIU N, et al. Ignition enhancement and NO x formation of NH3/air mixtures by non-equilibrium plasma discharge?[J]. Combustion and Flame2024259: 113140.
164 SHAHSAVARI M, KONNOV A A, VALERA-MEDINA A, et al. On nanosecond plasma-assisted ammonia combustion: Effects of pulse and mixture properties[J]. Combustion and Flame2022245: 112368.
165 TANEJA T S, YANG S. Numerical modeling of plasma assisted pyrolysis and combustion of ammonia?[C]?∥AIAA Scitech 2021 Forum. Reston: AIAA, 2021.
166 YOU B C, LI S P, ZHENG H T, et al. Numerical investigation of nanosecond plasma-assisted ignition in blast furnace gas[J]. Fuel2024365: 131244.
167 SNOECKX R, JUN D, LEE B J, et al. Kinetic study of plasma assisted oxidation of H2 for an undiluted lean mixture[J]. Combustion and Flame2022242: 112205.
168 SNOECKX R, CHA M S. Kinetic study of plasma assisted oxidation of H2 for an undiluted rich mixture?[J]. Combustion and Flame2023250: 112638.
169 班杨杨, 张帆, 钟生辉, 等. 交流放电等离子体助燃乙烯/空气的数值模拟[J]. 内燃机工程202243(1): 58-66.
  BAN Y Y, ZHANG F, ZHONG S H, et al. Numerical simulation of AC discharge plasma assisted ethylene/air combustion[J]. Chinese Internal Combustion Engine Engineering202243(1): 58-66 (in Chinese).
170 LI Z Y, ZHU Y F, PAN D, et al. Characterization of a gliding arc igniter from an equilibrium stage to a non-equilibrium stage using a coupled 3D-0D approach?[J]. Processes202311(3): 873.
171 BAN Y Y, ZHONG S H, ZHU J J, et al. Effects of non-equilibrium plasma and equilibrium discharge on low-temperature combustion in lean propane/air mixtures[J]. Fuel2023339: 127353.
172 ZHONG H T, MAO X Q, ROUSSO A C, et al. Kinetic study of plasma-assisted n-dodecane/O2/N2 pyrolysis and oxidation in a nanosecond-pulsed discharge[J]. Proceedings of the Combustion Institute202138(4): 6521-6531.
173 LIU N, CHEN Q, JIANG X W, et al. Three-stage hybrid NSD/DC plasma assisted n-C5H12/O2/N2 ignition: Improved energy efficiency and reduced NO x /N2O emissions?[J]. Proceedings of the Combustion Institute202440(1-4): 105449.
174 PANCHESHNYI S, EISMANN B, HAGELAAR G, et al. Computer code ZDPlasKin[M]. Toulouse: University of Toulouse, 2008: 1.
175 LUTZ A, KEE R, MILLER J. SENKIN: A Fortran program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis[R]. 1987.
176 GOODWIN D G, MOFFAT H K, SPETH R L. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.2.0[R]. 2015.
177 SHAO X, LACOSTE D A, IM H G. ChemPlasKin: a general-purpose program for unified gas and plasma kinetics simulations[J]. Applications in Energy and Combustion Science202419: 100280.
178 HAGELAAR G J M, PITCHFORD L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models?[J]. Plasma Sources Science Technology200514(4): 722-733.
179 FLITTI A, PANCHESHNYI S. Gas heating in fast pulsed discharges in N2-O2 mixtures[J]. The European Physical Journal Applied Physics45(2): 21001.
180 HEIJKERS S, BOGAERTS A. CO2 conversion in a gliding arc plasmatron: Elucidating the chemistry through kinetic modeling[J]. The Journal of Physical Chemistry C2017121(41): 22644-22655.
181 气体放电等离子体基础数据库[DB/OL]. (2022-04-05). .
  Gas Discharge Plasma Database[DB/OL].(2022-04-05). (in Chinese).
182 NIJDAM S, TEUNISSEN J, EBERT U. The physics of streamer discharge phenomena?[J]. Plasma Sources Science and Technology202029(10): 103001.
183 KUSHNER M J. Modelling of microdischarge devices: Plasma and gas dynamics[J]. Journal of Physics D: Applied Physics200538(11): 1633-1643.
184 GRUBERT G K, BECKER M M, LOFFHAGEN D. Why the local-mean-energy approximation should be used in hydrodynamic plasma descriptions instead of the local-field approximation[J]. Physical Review E200980(3): 036405.
185 LI C, BROK W J M, EBERT U, et al. Deviations from the local field approximation in negative streamer heads[J]. 2007101(12): 123305.
186 BOEUF J P, LAGMICH Y, UNFER T, et al. Electrohydrodynamic force in dielectric barrier discharge plasma actuators?[J]. Journal of Physics D Applied Physics200740(3): 652-662.
187 DECONINCK T, MAHADEVAN S, RAJA L L. Computational simulation of coupled nonequilibrium discharge and compressible flow phenomena in a microplasma thruster[J]. Journal of Applied Physics2009106(6): 063305.
188 UNFER T, BOEUF J P. Modeling and comparison of sinusoidal and nanosecond pulsed surface dielectric barrier discharges for flow control?[J]. Plasma Physics and Controlled Fusion201052(12): 124019.
189 THOLIN F, BOURDON A. Simulation of the hydrodynamic expansion following a nanosecond pulsed spark discharge in air at atmospheric pressure[J]. Journal of Physics D: Applied Physics201346(36): 365205.
190 NORBERG S A, JOHNSEN E, KUSHNER M J. Formation of reactive oxygen and nitrogen species by repetitive negatively pulsed helium atmospheric pressure plasma jets propagating into humid air?[J]. Plasma Sources Science and Technology201524(3): 035026.
191 LIETZ A M, JOHNSEN E, KUSHNER M J. Plasma-induced flow instabilities in atmospheric pressure plasma jets[J]. Applied Physics Letters2017111(11): 114101.
192 ZHU Y F, SHCHERBANEV S, BARON B, et al. Nanosecond surface dielectric barrier discharge in atmospheric pressure air: I. measurements and 2D modeling of morphology, propagation and hydrodynamic perturbations?[J]. Plasma Sources Science and Technology201726(12): 125004.
193 THOLIN F. Numerical simulation of nanosecond repetitively pulsed discharges in air at atmospheric pressure : Application to plasma-assisted combustion?[D]. Paris: Ecole Centrale Paris, 2012.
194 KOBAYASHI S, BONAVENTURA Z, THOLIN F, et al. Study of nanosecond discharges in H2-air mixtures at atmospheric pressure for plasma assisted combustion applications?[J]. Plasma Sources Science and Technology201726(7): 075004.
195 SHARMA A, SUBRAMANIAM V, SOLMAZ E, et al. Fully coupled modeling of nanosecond pulsed plasma assisted combustion ignition?[J]. Journal of Physics D: Applied Physics201952(9): 095204.
196 MAO X Q, ZHONG H T, JU Y G. 2D modeling of the electrode geometry effects on plasma-assisted H2/air ignition?[C]?∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022.
197 BARLEON N, CHENG L, CUENOT B, et al. Investigation of the impact of NRP discharge frequency on the ignition of a lean methane-air mixture using fully coupled plasma-combustion numerical simulations?[J]. Proceedings of the Combustion Institute202339(4): 5521-5530.
198 XIN Z Y, ZHENG Z C, HU Y, et al. Numerical modeling of plasma assisted ignition of CH4/O2/He mixture by the nanosecond repetitive pulsed surface dielectric barrier discharge[J]. Fuel2024357: 129975.
199 MAO X Q, ZHONG H T, WANG Z Y, et al. Effects of inter-pulse coupling on nanosecond pulsed high frequency discharge ignition in a flowing mixture[J]. Proceedings of the Combustion Institute202339(4): 5457-5464.
200 ZHAN Q, BAN Y Y, ZHANG F, et al. Numerical simulation of flame propagation characteristics of NH3/Air flames assisted by non-equilibrium plasma discharge[J]. Combustion and Flame2025271: 113809.
201 BAN Y Y, ZHANG F, ZHANG N Y, et al. The improved performance of plasma assisted combustion (PAC) simulations using the fully analytical Jacobian[J]. Combustion and Flame2024270: 113788.
202 SUN S R, KOLEV S, WANG H X, et al. Coupled gas flow-plasma model for a gliding arc: investigations of the back-breakdown phenomenon and its effect on the gliding arc characteristics[J]. Plasma Sources Science and Technology201726(1): 015003.
203 VAN ALPHEN S, AHMADI ESHTEHARDI H, O’MODHRAIN C, et al. Effusion nozzle for energy-efficient NO production in a rotating gliding arc plasma reactor[J]. Chemical Engineering Journal2022443: 136529.
204 BOURLET A, LABAUNE J, THOLIN F, et al. Numerical model of restrikes in DC gliding arc discharges[C]?∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022.
205 CASTELA M, FIORINA B, COUSSEMENT A, et al. Modelling the impact of non-equilibrium discharges on reactive mixtures for simulations of plasma-assisted ignition in turbulent flows?[J]. Combustion and Flame2016166: 133-147.
206 CASTELA M, STEPANYAN S, FIORINA B, et al. A 3-D DNS and experimental study of the effect of the recirculating flow pattern inside a reactive kernel produced by nanosecond plasma discharges in a methane-air mixture[J]. Proceedings of the Combustion Institute201736(3): 4095-4103.
207 BARLéON N, CHENG L, CUENOT B, et al. A phenomenological model for plasma-assisted combustion with NRP discharges in methane-air mixtures: PACMIND?[J]. Combustion and Flame2023253: 112794.
208 WANG Y, KONG C D, WANG C Y, et al. Characteristics of unsteady rotating gliding arc induced ignition of ammonia-air mixture in swirling flow[J]. Fuel2024364: 131117.
209 WANG Y, KONG C D, WU X J, et al. Characteristics of rotating gliding arc induced thermal ignition of lean methane-air mixtures?[J]. Applications in Energy and Combustion Science202314: 100154.
210 LI Z, ZHAO N, MA X, et al. Numerical investigations of the effects of gliding arc discharge on C3H8/air ignition using a new three-dimensional phenomenological gliding arc model?[R]. 2024.
Outlines

/