ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Research progress and application perspectives on smart window scattering control technology
Received date: 2025-01-26
Revised date: 2025-02-14
Accepted date: 2025-03-03
Online published: 2025-03-06
Supported by
National Key Research and Development Program of China—Young Scientists Project(2023YFB3811600);Harbin Institute of Technology Major Cultivation Project of “Revealing the Banner and Taking the Lead”(2023FRFK01002);National Natural Science Foundation of China Youth Fund Project(52302172);Heilongjiang Province Key Research and Development Program(2024ZX12C08);National Natural Science Foundation of China International (Regional) Cooperation and Exchange Project(52261135545);Harbin Institute of Technology Idea Fund(HIT.DZJJ.2023041)
With the growing demand for light and thermal environment control, scattering-type smart windows have become a research hotspot due to their advantages of fast response and low energy consumption. We systematically examine the research progress of scattering-type smart window technology, analyzes its application potential in lighting regulation and thermal management, and discusses future development directions. Current research shows that scattering control technology can be classified into two major categories: surface scattering and volume scattering. Surface scattering, through microstructure design combined with mechanical stress, electric field, and photothermal response strategies, can achieve a transmittance regulation range of 30%-40% with millisecond-level response. Volume scattering, represented by polymer-liquid crystal systems, offers advantages such as low driving voltage, rapid response (millisecond level), and high light transmittance, though durability and cost still need optimization. Current technology faces technical bottlenecks including insufficient scattering efficiency, poor environmental stability, and difficulties in large-scale fabrication. Therefore, future research should focus on material performance optimization, development of multifunctional composite regulation mechanisms, and breakthroughs in large-scale manufacturing processes to promote the application of this technology in building energy conservation, transportation safety, and aviation.
Ruicong ZHANG , Tianyu WANG , Yurong HE , Jiaqi ZHU , Jiecai HAN . Research progress and application perspectives on smart window scattering control technology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(6) : 531844 -531844 . DOI: 10.7527/S1000-6893.2024.31844
?[1] Federal Aviation Administration. U.S.—Annual and cumulative laser illuminations?[EB/OL]. (2024-01-13) ?[2024-01-13]. . | |
?[2] 禚宝国. 基于汽车运行与道路线形各因素影响下眩目的分析及规律研究?[D]. 重庆: 重庆交通大学, 2014. | |
ZHUO B G. Analysis and research on the law of glare under the influence of various factors such as automobile operation and road alignment??[D]. Chongqing: Chongqing Jiaotong University, 2014 (in Chinese). | |
?[3] KOWALCZYK Z, TWARDOWSKI S, MALINOWSKI M, et al. Life cycle assessment (LCA) and energy assessment of the production and use of windows in residential buildings?[J]. Scientific Reports, 2023, 13(1): 19752. | |
?[4] WU S D, SUN H L, DUAN M F, et al. Applications of thermochromic and electrochromic smart windows: Materials to buildings?[J]. Cell Reports Physical Science, 2023, 4(5): 101370. | |
?[5] ZHANG R C, ZHANG Z B, HAN J C, et al. Advanced liquid crystal-based switchable optical devices for light protection applications: Principles and strategies?[J]. Light, Science & Applications, 2023, 12(1): 11. | |
?[6] ZHANG H Q, WANG L, WANG F G, et al. Thermal-responsive smart windows with passive dimming and thermal energy storage?[J]. ACS Omega, 2024, 9(25): 27222-27231. | |
?[7] JIN X Y, HAO Y N, SU Z, et al. Dual-function smart windows using polymer stabilized cholesteric liquid crystal driven with interdigitated electrodes?[J]. Polymers, 2023, 15(7): 1734. | |
?[8] LIN C J, HUR J, CHAO C Y H, et al. All-weather thermochromic windows for synchronous solar and thermal radiation regulation?[J]. Science Advances, 2022, 8(17): eabn7359. | |
?[9] NIU Y C, ZHOU Y, DU D X, et al. Energy saving and energy generation smart window with active control and antifreezing functions?[J]. Advanced Science, 2022, 9(6): e2105184. | |
?[10] MUSTAFA M N, MOHD ABDAH M A A, NUMAN A, et al. Smart window technology and its potential for net-zero buildings: A review?[J]. Renewable and Sustainable Energy Reviews, 2023, 181: 113355. | |
?[11] PAREKH R. Automating the design process for smart building technologies?[J]. World Journal of Advanced Research and Reviews, 2024, 23(2): 1213-1234. | |
?[12] 智能调光玻璃?[EB/OL]. (2024-01-18) ?[2024-02-15]. . | |
Smart dimming glass?[EB/OL]. (2024-01-18) ?[2024-02-15]. (in Chinese). | |
?[13] 中国商用飞机有限责任公司. 中国商飞公司市场预测年报(2024—2043)?[M]. 上海: 中国商用飞机有限责任公司, 2024. | |
Commercial Aircraft Corporation of China. COMAC market forecast annual report (2024—2043)?[M]. Shanghai: Commercial Aircraft Corporation of China, 2024 (in Chinese). | |
?[14] 张晓光, 唐先锋, 肖晓晟. 非线性光学与非线性光纤光学贯通教程?[M]. 北京: 北京邮电大学出版社, 2021. | |
ZHANG X G, TANG X F, XIAO X S. Nonlinear optics including nonlinear fiber optics?[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2021 (in Chinese). | |
?[15] 张畅, 覃诗译, 刘遥, 等. 基于声光信号的组织散射系数测量方法研究?[J]. 中国激光, 2025, 52(3): 0307101. | |
ZHANG C, QIN S Y, LIU Y, et al. Measurement method of tissue scattering coefficient based on acousto-optic signals?[J]. China Industrial Economics, 2025, 52(3): 0307101 (in Chinese). | |
?[16] 李忻哲, 高爱华, 秦文罡, 等. 积灰光伏板表面散射光强度分布实验研究?[J]. 光电子·激光, 2023, 34(3): 284-290. | |
LI X Z, GAO A H, QIN W G, et al. Experimental study on intensity distribution of scattered light on the surface of dust accumulation photovoltaic panels?[J]. Journal of Optoelectronics·Laser, 2023, 34(3): 284-290 (in Chinese). | |
?[17] 张华. BCC_RAD大气辐射传输模式?[M]. 北京: 气象出版社, 2016. | |
ZHANG H. BCC_RAD atmospheric radiation transmission mode?[M]. Beijing: China Meteorological Press, 2016 (in Chinese). | |
?[18] CHO D, CHEN H, SHIN J, et al. Mechanoresponsive scatterers for high-contrast optical modulation?[J]. Nanophotonics, 2022, 11(11): 2737-2762. | |
?[19] ZHANG C M, LIU Y Y. Electron-surface scattering from first-principles?[J]. ACS Nano, 2024, 18(40): 27433-27439. | |
?[20] BULGARELLI B, KISELEV V, ZIBORDI G. Simulation and analysis of adjacency effects in coastal waters: A case study?[J]. Applied Optics, 2014, 53(8): 1523-1545. | |
?[21] SCHR?DER S, HERFFURTH T, DUPARRé A, et al. Impact of surface roughness on the scatter losses and the scattering distribution of surfaces and thin film coatings?[C]∥Optical Fabrication, Testing, and Metrology IV. New York: SPIE, 2011: 87860D. | |
?[22] ZHANG Z Z, CHEN M C, ZHANG L C, et al. A straightforward spectral emissivity estimating method based on constructing random rough surfaces?[J]. Light, Science & Applications, 2023, 12(1): 266. | |
?[23] PIROUZFAM N, SENDUR K. Tungsten based spectrally selective absorbers with anisotropic rough surface texture?[J]. Nanomaterials, 2021, 11(8): 2018. | |
?[24] DOBROTVORSKIY S, ALEKSENKO B A, BASOVA Y, et al. Light beam scattering from the metal surface with a complex mono-and two-periodic microstructure formed with femtosecond laser radiation?[J]. Applied Sciences, 2024, 14(19): 8662. | |
?[25] CANINO M, FEDELI P, ALBONETTI C, et al. 4H-SiC surface morphology after Al ion implantation and annealing with C-cap?[J]. Journal of Microscopy, 2020, 280(3): 229-240. | |
?[26] BEZUS E A, DOSKOLOVICH L L, SOIFER V A. Near-wavelength diffraction gratings for surface plasmon polaritons?[J]. Optics Letters, 2015, 40(21): 4935-4938. | |
?[27] JENSEN G V, BARKER J G. Effects of multiple scattering encountered for various small-angle scattering model functions?[J]. Journal of Applied Crystallography, 2018, 51(5): 1455-1466. | |
?[28] ZHANG C X, YUAN Y, LI T J, et al. Analytical method to study multiple scattering characteristics in participating media?[J]. International Journal of Heat and Mass Transfer, 2016, 101: 1053-1062. | |
?[29] BERK J, FOREMAN M R. Role of multiple scattering in single particle perturbations in absorbing random media?[J]. Physical Review Research, 2021, 3(3): 033111. | |
?[30] Synopsys. What is light scattering ?[EB/OL]. (2023-05-10) ?[2024-01-20]. . | |
?[31] HAN J K, LIU X W, JIANG M, et al. A novel light scattering method with size analysis and correction for on-line measurement of particulate matter concentration?[J]. Journal of Hazardous Materials, 2021, 401: 123721. | |
?[32] KUNZ K, KRAUSE B, KRETZSCHMAR B, et al. Direction dependent electrical conductivity of polymer/carbon filler composites?[J]. Polymers, 2019, 11(4): 591. | |
?[33] NJOKU E G. Encyclopedia of remote sensing?[M]. New York: Springer, 2014. | |
?[34] GORDON H R. Light scattering and absorption by randomly-oriented cylinders: Dependence on aspect ratio for refractive indices applicable for marine particles?[J]. Optics Express, 2011, 19(5): 4673-4691. | |
?[35] 住房和城乡建设部. 建筑照明设计标准: ?[S]. 北京: 中国建筑工业出版社, 2020. | |
Ministry of Housing and Urban-Rural Development. Standard for lighting design of buildings: ?[S]. Beijing: China Architecture & Building Press, 2020 (in Chinese). | |
?[36] 倪旻, 杨素逸, 彭茂龙. 自然采光在建筑改造节能设计中的有效运用研究?[J]. 科学技术创新, 2024(24): 148-151. | |
NI M, YANG S Y, PENG M L. Study on the effective application of natural lighting in the energy-saving design of building reconstruction?[J]. Scientific and Technological Innovation, 2024(24): 148-151 (in Chinese). | |
?[37] NGAI P, BOYCE P. The effect of overhead glare on visual discomfort?[J]. Journal of the Illuminating Engineering Society, 2000, 29(2): 29-38. | |
?[38] H?PE A. Diffuse reflectance and transmittance?[M]∥ Spectrophotometry—Accurate Measurement of Optical Properties of Materials. Amsterdam: Elsevier, 2014: 179-219. | |
?[39] LIU W C, KOO A, MOLLOY E, et al. APMP pilot study on high transmittance haze?[J]. Journal of Physics: Conference Series, 2024, 2864(1): 012011. | |
?[40] GERMER T A. Bidirectional scattering distribution function measurements from volume diffusers: Correction factors and associated uncertainties?[J]. Applied Optics, 2016, 55(25): 6978-6982. | |
?[41] 刘钟琦, 胡旭阳, 罗海宁, 等. 战斗机驾驶舱环境热舒适性仿真与优化?[J]. 航空学报, 2024, 45(7): 128919. | |
LIU Z Q, HU X Y, LUO H N, et al. Simulation and optimization of thermal comfort of fighter cockpit environment?[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 128919 (in Chinese). | |
?[42] 周浩, 彭晋卿, 王蒙, 等. 不同运行状态下光伏窗的太阳得热系数对比研究?[J]. 建筑科学, 2023, 39(2): 105-113, 170. | |
ZHOU H, PENG J Q, WANG M, et al. A comparative study on the solar heat gain coefficient of photovoltaic windows under different operating conditions?[J]. Building Science, 2023, 39(2): 105-113, 170 (in Chinese). | |
?[43] 涂逢祥. 节能窗技术?[M]. 北京: 中国建筑工业出版社, 2003. | |
TU F X. Energy-saving window technology?[M]. Beijing: China Architecture & Building Press, 2003 (in Chinese). | |
?[44] YIN H Z, ZHOU X S, ZHOU Z G, et al. Switchable kirigami structures as window envelopes for energy-efficient buildings?[J]. Research, 2023, 6: 0103. | |
?[45] LI S Y, LI D H W, CHEN W Q, et al. Simple mathematical models to link climate-based daylight metrics with daylight factor metrics and daylighting design implications?[J]. Heliyon, 2023, 9(5): e15786. | |
?[46] MORGENSTERN Y, GEISLER W S, MURRAY R F. Human vision is attuned to the diffuseness of natural light?[J]. Journal of Vision, 2014, 14(9): 15. | |
?[47] K?STER H. Daylighting controls, performance, and global impacts?[M]?∥Sustainable Built Environments. New York: Springer US, 2020: 383-429. | |
?[48] HAMEDANI Z, SOLGI E, SKATES H, et al. Visual discomfort and glare assessment in office environments: A review of light-induced physiological and perceptual responses?[J]. Building and Environment, 2019, 153: 267-280. | |
?[49] KWONG Q J. Light level, visual comfort and lighting energy savings potential in a green-certified high-rise building?[J]. Journal of Building Engineering, 2020, 29: 101198. | |
?[50] TSENG H Y, CHANG L M, LIN K W, et al. Smart window with active-passive hybrid control?[J]. Materials, 2020, 13(18): 4137. | |
?[51] QIAN D W, YANG S Y, WANG X F, et al. Thermosensitive scattering hydrogels based on triblock poly-ethers: A novel approach to solar radiation regulation?[J]. Polymers, 2023, 16(1): 8. | |
?[52] LEE M, KIM G, JUNG Y, et al. Photonic structures in radiative cooling?[J]. Light, Science & Applications, 2023, 12(1): 134. | |
?[53] LIM J, JUNG J, RHO J, et al. Cooling performance prediction of particle-based radiative cooling film considering particle size distribution?[J]. Micromachines, 2024, 15(3): 292. | |
?[54] TAN A, AHMAD Z, VUKUSIC P, et al. Multifaceted structurally coloured materials: Diffraction and total internal reflection (TIR) from nanoscale surface wrinkling?[J]. Molecules, 2023, 28(4): 1710. | |
?[55] SHRESTHA M, ASUNDI A, LAU G K. Smart window based on electric unfolding of microwrinkled TiO2 nanometric films?[J]. ACS Photonics, 2018, 5(8): 3255-3262. | |
?[56] XU C Y, ESCOBAR M C, GORODETSKY A A. Stretchable cephalopod-inspired multimodal camouflage systems?[J]. Advanced Materials, 2020, 32(16): 1905717. | |
?[57] LEE S G, LEE D Y, LIM H S, et al. Switchable transparency and wetting of elastomeric smart windows?[J]. Advanced Materials, 2010, 22(44): 5013-5017. | |
?[58] ZHUANG J, WU D M, ZHANG Y J, et al. Investigation on optical property of diffuser with 3D microstructures?[J]. Optik, 2014, 125(24): 7186-7190. | |
?[59] BOUCHARD F, SOLDERA M, LASAGNI A F. PMMA optical diffusers with hierarchical surface structures imprinted by hot embossing of laser-textured stainless steel?[J]. Advanced Optical Materials, 2023, 11(3): 2202091. | |
?[60] WU X N, LIU M Q, HU J G, et al. Light diffusing mechanism of new diffusion phenomena for diffusers with different diffusing patterns?[J]. Optical Materials, 2021, 111: 110599. | |
?[61] JIANG S L, YIN X L, BAI J X, et al. Fabrication of ultraviolet/thermal-sensitive PMMA/PDMS wrinkle structures and the demonstration as smart optical diffusers?[J]. Ceramics International, 2023, 49(7): 10787-10794. | |
?[62] JIANG S L, TAN Y, PENG Y, et al. Tunable optical diffusers based on the UV/ozone-assisted self-wrinkling of thermal-cured polymer films?[J]. Sensors, 2021, 21(17): 5820. | |
?[63] CAO C Y, CHAN H F, ZANG J F, et al. Harnessing localized ridges for high-aspect-ratio hierarchical patterns with dynamic tunability and multifunctionality?[J]. Advanced Materials, 2014, 26(11): 1763-1770. | |
?[64] WANG C, ZHANG H R, YANG F Y, et al. Enhanced light scattering effect of wrinkled transparent conductive ITO thin film?[J]. RSC Advances, 2017, 7(41): 25483-25487. | |
?[65] MOON J, LEE K, PARK S K, et al. Random wrinkle structures for spectrum preserved warm white organic light emitting diodes?[J]. Journal of Industrial and Engineering Chemistry, 2023, 117: 298-306. | |
?[66] WU K, SUN Y, YUAN H Z, et al. Harnessing dynamic wrinkling surfaces for smart displays?[J]. Nano Letters, 2020, 20(6): 4129-4135. | |
?[67] HUANG Y W, LEE H W H, SOKHOYAN R, et al. Gate-tunable conducting oxide metasurfaces?[J]. Nano Letters, 2016, 16(9): 5319-5325. | |
?[68] LEE E, ZHANG M L, CHO Y, et al. Tilted pillars on wrinkled elastomers as a reversibly tunable optical window?[J]. Advanced Materials, 2014, 26(24): 4127-4133. | |
?[69] HYUN J K, PARK J, KIM E, et al. Rational control of diffraction and interference from conformal phase gratings: toward high-resolution 3D nanopatterning?[J]. Advanced Optical Materials, 2014, 2(12): 1213-1220. | |
?[70] JEON S, PARK J U, CIRELLI R, et al. Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks?[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(34): 12428-12433. | |
?[71] ZENG S S, ZHANG D Y, HUANG W H, et al. Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds?[J]. Nature Communications, 2016, 7: 11802. | |
?[72] LI Z W, ZHAI Y, WANG Y, et al. Harnessing surface wrinkling-cracking patterns for tunable optical transmittance?[J]. Advanced Optical Materials, 2017, 5(19): 1700425. | |
?[73] YAO X, HU Y H, GRINTHAL A, et al. Adaptive fluid-infused porous films with tunable transparency and wettability?[J]. Nature Materials, 2013, 12(6): 529-534. | |
?[74] THOMAS A V, ANDOW B C, SURESH S, et al. Controlled crumpling of graphene oxide films for tunable optical transmittance?[J]. Advanced Materials, 2015, 27(21): 3256-3265. | |
?[75] 王瑾宇, 徐艺艺, 金梦诗, 等. 改变本征形变特性: 机械超材料启发的液晶弹性体研究进展?[J]. 液晶与显示, 2024, 39(3): 278-288. | |
WANG J Y, XU Y Y, JIN M S, et al. Changing intrinsic deformation characteristics: Research progress of liquid crystal elastomers inspired by mechanical metamaterials?[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(3): 278-288 (in Chinese). | |
?[76] 雷岚, 韩文佳, 娄江. 基于动态键的单/双网络液晶弹性体的研究进展?[J]. 复合材料学报, 2024, 41(7): 3372-3388. | |
LEI L, HAN W J, LOU J. Research progress of single/dual network liquid crystal elastomers based on dynamic bonds?[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3372-3388 (in Chinese). | |
?[77] ZHANG Z B, LI J J, ZHANG R C, et al. Recent advances in responsive liquid crystal elastomer-contained fibrous composites?[J]. Responsive Materials, 2024, 2(4): e20240021. | |
?[78] WANG Z X, SI M Q, HAN J Y, et al. Hydrogen-bonded supramolecular network enabled gentle reprogramming of liquid crystal elastomer toward evolutionary robot?[J]. Angewandte Chemie International Edition, 2025, 64(7): e202416095. | |
?[79] PINCHIN N P, GUO H S, METELING H, et al. Liquid crystal networks meet water: It’s complicated!?[J]. Advanced Materials, 2024, 36(12): 2303740. | |
?[80] GORIELY A, MIHAI L A. Liquid crystal elastomers wrinkling?[J]. Nonlinearity, 2021, 34(8): 5599-5629. | |
?[81] CHENG M, CAI W F, WANG Z M, et al. Responsive liquid crystal network microstructures with customized shapes and predetermined morphing for adaptive soft micro-optics?[J]. ACS Applied Materials & Interfaces, 2024, 16(24): 31776-31787. | |
?[82] 邓亚峰, 周洪福, 李全来, 等. 基于介电弹性体的驱动器研究进展?[J]. 中国塑料, 2021, 35(11): 161-172. | |
DENG Y F, ZHOU H F, LI Q L, et al. Research progress in actuator based on dielectric elastomer?[J]. China Plastics, 2021, 35(11): 161-172 (in Chinese). | |
?[83] SHRESTHA M, ASUNDI A, LAU G K. Electrically tunable window based on microwrinkled ZnO/Ag thin film?[C]∥Electroactive Polymer Actuators and Devices (EAPAD) 2017. New York: SPIE, 2017: 101261V. | |
?[84] SHIAN S, KJEER P, CLARKE D R. Electric-field induced surface instabilities of soft dielectrics and their effects on optical transmittance and scattering?[J]. Journal of Applied Physics, 2018, 123(11): 113105. | |
?[85] VAN DEN ENDE D, KAMMINGA J D, BOERSMA A, et al. Voltage-controlled surface wrinkling of elastomeric coatings?[J]. Advanced Materials, 2013, 25(25): 3438-3442. | |
?[86] SHIAN S, CLARKE D R. Electrically tunable window device?[J]. Optics Letters, 2016, 41(6): 1289-1292. | |
?[87] SHIAN S, CLARKE D R. Electrically-tunable surface deformation of a soft elastomer?[J]. Soft Matter, 2016, 12(13): 3137-3141. | |
?[88] HOU H H, YIN J, JIANG X S. Reversible Diels-Alder reaction to control wrinkle patterns: From dynamic chemistry to dynamic patterns?[J]. Advanced Materials, 2016, 28(41): 9126-9132. | |
?[89] AGRAWAL A, LUCHETTE P, PALFFY-MUHORAY P, et al. Surface wrinkling in liquid crystal elastomers?[J]. Soft Matter, 2012, 8(27): 7138-7142. | |
?[90] HOU H H, LI F D, SU Z L, et al. Light-reversible hierarchical patterns by dynamic photo-dimerization induced wrinkles?[J]. Journal of Materials Chemistry C, 2017, 5(34): 8765-8773. | |
?[91] KOSA T, SUKHOMLINOVA L, SU L L, et al. Light-induced liquid crystallinity?[J]. Nature, 2012, 485: 347-349. | |
?[92] ZONG C Y, ZHAO Y, JI H P, et al. Tuning and erasing surface wrinkles by reversible visible-light-induced photoisomerization?[J]. Angewandte Chemie International Edition, 2016, 55(12): 3931-3935. | |
?[93] LI F D, HOU H H, YIN J, et al. Near-infrared light-responsive dynamic wrinkle patterns?[J]. Science Advances, 2018, 4(4): eaar5762. | |
?[94] MA T J, LI J, MA X D, et al. Temperature-controlled dynamic moisture-responsive wrinkled patterns?[J]. Acta Chimica Sinica, 2023, 81(7): 749. | |
?[95] DRISCOLL T, KIM H T, CHAE B G, et al. Memory metamaterials?[J]. Science, 2009, 325(5947): 1518-1521. | |
?[96] MICHEL A U, ZALDEN P, CHIGRIN D N, et al. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses?[J]. ACS Photonics, 2014, 1(9): 833-839. | |
?[97] YU S D, CHEN J C, GOMARD G, et al. Recent progress in light-scattering porous polymers and their applications?[J]. Advanced Optical Materials, 2023, 11(13): 2203134. | |
?[98] PATTELLI L, EGEL A, LEMMER U, et al. Role of packing density and spatial correlations in strongly scattering 3D systems?[J]. Optica, 2018, 5(9): 1037. | |
?[99] HU J G, ZHOU Y M. The properties of nano(ZnO-CeO2)@polysiloxane core-shell microspheres and their application for fabricating optical diffusers?[J]. Applied Surface Science, 2016, 365: 166-170. | |
?[100] SUTHABANDITPONG W, TANI M, TAKAI C, et al. Facile fabrication of light diffuser films based on hollow silica nanoparticles as fillers?[J]. Advanced Powder Technology, 2016, 27(2): 454-460. | |
?[101] ZHONG X, HU S C, WANG Y J, et al. In situ hydrothermal synthesis of polysiloxane@3D flower-like hollow MgAl LDH microspheres with superior light diffusing properties for optical diffusers?[J]. Applied Clay Science, 2019, 171: 92-99. | |
?[102] CHEN D, LIU X W, HAN J K, et al. Measurements of particulate matter concentration by the light scattering method: Optimization of the detection angle?[J]. Fuel Processing Technology, 2018, 179: 124-134. | |
?[103] MENDOZA J M, CHEN K, WALTERS S, et al. Classification of aggregates using multispectral two-dimensional angular light scattering simulations?[J]. Molecules, 2022, 27(19): 6695. | |
?[104] AGRAWAL Y C, WHITMIRE A, MIKKELSEN O A, et al. Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction?[J]. Journal of Geophysical Research: Oceans, 2008, 113(C4): C04023. | |
?[105] WANG J X, XU C G, NILSSON A M, et al. A novel phase function describing light scattering of layers containing colloidal nanospheres?[J]. Nanoscale, 2019, 11(15): 7404-7413. | |
?[106] LIU X, XIONG Y, SHEN J B, et al. Fast fabrication of a novel transparent PMMA light scattering materials with high haze by doping with ordinary polymer?[J]. Optics Express, 2015, 23(14): 17793. | |
?[107] WU G, GUO S, YIN Y, et al. Hollow microspheres of SiO2/PMMA nanocomposites: Preparation and their application in light diffusing films?[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28(6): 2701-2713. | |
?[108] GE D T, LEE E, YANG L L, et al. A robust smart window: Reversibly switching from high transparency to angle-independent structural color display?[J]. Advanced Materials, 2015, 27(15): 2489-2495. | |
?[109] GUO S M, LIANG X, ZHANG C H, et al. Preparation of a thermally light-transmittance-controllable film from a coexistent system of polymer-dispersed and polymer-stabilized liquid crystals?[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2942-2947. | |
?[110] ZHANG H M, ZHONG T J, CHEN M, et al. The physical properties of alkene-terminated liquid crystal molecules/E8 mixture and the electro-optical properties as they doped in polymer-dispersed liquid crystal systems?[J]. Liquid Crystals, 2018, 45(8): 1118-1128. | |
?[111] ZHANG H M, CHEN M, JIANG T M, et al. Cyano terminated tolane compounds for polymer dispersed liquid crystal application: Relationship between cyano terminated tolane based molecular structures and electro-optical properties?[J]. Liquid Crystals, 2018, 45(12): 1771-1782. | |
?[112] KATARIYA-JAIN A, MHATRE M M, DIERKING I, et al. Enhanced thermo-electro-optical and dielectric properties of carbon nanoparticle-doped polymer dispersed liquid crystal based switchable windows?[J]. Journal of Molecular Liquids, 2024, 393: 123575. | |
?[113] HE T Y, YANG B, ZHANG L, et al. A study on electro-optical properties of polymer dispersed liquid crystal films doped with barium titanate nanoparticles prepared by nucleophile-initiated thiol-ene click reaction?[J]. Liquid Crystals, 2020, 47(7): 1004-1018. | |
?[114] HEMAIDA A, GHOSH A, SUNDARAM S, et al. Simulation study for a switchable adaptive polymer dispersed liquid crystal smart window for two climate zones (Riyadh and London)?[J]. Energy and Buildings, 2021, 251: 111381. | |
?[115] MESLOUB A, GHOSH A, KOLSI L, et al. Polymer-Dispersed Liquid Crystal (PDLC) smart switchable windows for less-energy hungry buildings and visual comfort in hot desert climate?[J]. Journal of Building Engineering, 2022, 59: 105101. | |
?[116] QAHTAN A M, ALMAWGANI A H M, GHOSH A. Smart double glazing integrated polymer dispersed liquid crystal for enhancing building’s thermal performance in hot-arid climate?[J]. Journal of Building Engineering, 2023, 80: 107971. | |
?[117] DENG Y, YANG Y H, XIAO Y H, et al. Ultrafast switchable passive radiative cooling smart windows with synergistic optical modulation?[J]. Advanced Functional Materials, 2023, 33(35): 2301319. | |
?[118] PARK J Y, KIM H K. Highly stretchable polymer-dispersed liquid crystal-based smart windows with transparent and stretchable hybrid electrodes?[J]. RSC Advances, 2018, 8(64): 36549-36557. | |
?[119] XIA Y, LIANG X, JIANG Y, et al. High-efficiency and reliable smart photovoltaic windows enabled by multiresponsive liquid crystal composite films and semi-transparent perovskite solar cells?[J]. Advanced Energy Materials, 2019, 9(33): 1900720. | |
?[120] WANG J H, LIEN S Y, HO J R, et al. Optical diffusers based on silicone emulsions?[J]. Optical Materials, 2009, 32(2): 374-377. | |
?[121] 胡耀强, 陈法锦, 刘海宁, 等. 聚N-异丙基丙烯酰胺水凝胶的制备及热致聚集行为?[J]. 材料导报, 2018, 32(14): 2491-2496. | |
HU Y Q, CHEN F J, LIU H N, et al. Preparation of poly (N-isopropylacrylamide) hydrogel and its thermally induced aggregation behavior?[J]. Materials Review, 2018, 32(14): 2491-2496 (in Chinese). | |
?[122] 刘凯. PNIPAM温敏水凝胶的制备及其热致变色特性研究?[D]. 哈尔滨: 哈尔滨工业大学, 2019. | |
LIU K. Preparation and thermochromic properties of PNIPAM thermosensitive hydrogel?[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese). | |
?[123] 刘壮, 谢锐, 巨晓洁, 等. 具有快速响应特性的环境响应型智能水凝胶的研究进展?[J]. 化工学报, 2016, 67(1): 202-208. | |
LIU Z, XIE R, JU X J, et al. Progress in stimuli-responsive smart hydrogels with rapid responsive characteristics?[J]. CIESC Journal, 2016, 67(1): 202-208 (in Chinese). | |
?[124] 谭帼馨, 崔英德. HEMA共聚物水凝胶中水的存在状态?[J]. 膜科学与技术, 2004, 24(5): 25-28. | |
TAN G X, CUI Y D. States of water in HEMA hydrogels?[J]. Membrane Science and Technology, 2004, 24(5): 25-28 (in Chinese). | |
?[125] ZHOU Y, DONG X, MI Y, et al. Hydrogel smart windows ?[J]. Journal of Materials Chemistry A, 2020, 8(20): 10007-10025. | |
?[126] ZHONG S, XUE Y X, WANG K W, et al. pH-sensitive tunable thermochromic hydrogel with carbon quantum dots for smart windows?[J]. National Science Open, 2024, 3(3): 20230071. | |
?[127] KABEROVA Z, KARPUSHKIN E, NEVORALOVá M, et al. Microscopic structure of swollen hydrogels by scanning electron and light microscopies: Artifacts and reality?[J]. Polymers, 2020, 12(3): 578. | |
?[128] ZHOU Y, CAI Y F, HU X, et al. Temperature-responsive hydrogel with ultra-large solar modulation and high luminous transmission for “smart window” applications?[J]. Journal of Materials Chemistry A, 2014, 2(33): 13550-13555. | |
?[129] KLOUDA L, MIKOS A G. Thermoresponsive hydrogels in biomedical applications?[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68(1): 34-45. | |
?[130] KATONO H, MARUYAMA A, SANUI K, et al. Thermo-responsive swelling and drug release switching of interpenetrating polymer networks composed of poly(acrylamide-co-butyl methacrylate) and poly (acrylic acid)?[J]. Journal of Controlled Release, 1991, 16(1-2): 215-227. | |
?[131] OWENS D E, JIAN Y C, FANG J E, et al. Thermally responsive swelling properties of polyacrylamide/poly(acrylic acid) interpenetrating polymer network nanoparticles?[J]. Macromolecules, 2007, 40(20): 7306-7310. | |
?[132] LIU R X, FRAYLICH M, SAUNDERS B R. Thermoresponsive copolymers: From fundamental studies to applications?[J]. Colloid and Polymer Science, 2009, 287(6): 627-643. | |
?[133] PLATé N A, LEBEDEVA T L, VALUEV L I. Lower critical solution temperature in aqueous solutions of N-alkyl-substituted polyacrylamides?[J]. Polymer Journal, 1999, 31(1): 21-27. | |
?[134] DEFOREST C A, ANSETH K S. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions?[J]. Nature Chemistry, 2011, 3(12): 925-931. | |
?[135] GRIFFIN D R, KASKO A M. Photodegradable macromers and hydrogels for live cell encapsulation and release?[J]. Journal of the American Chemical Society, 2012, 134(31): 13103-13107. | |
?[136] FOMINA N, MCFEARIN C, SERMSAKDI M, et al. UV and near-IR triggered release from polymeric nanoparticles?[J]. Journal of the American Chemical Society, 2010, 132(28): 9540-9542. | |
?[137] CHUJO Y, SADA K, SAEGUSA T. Polyoxazoline having a coumarin moiety as a pendant group. Synthesis and photogelation?[J]. Macromolecules, 1990, 23(10): 2693-2697. | |
?[138] HE J, TREMBLAY L, LACELLE S, et al. Preparation of polymer single chain nanoparticles using intramolecular photodimerization of coumarin?[J]. Soft Matter, 2011, 7(6): 2380-2386. | |
?[139] BARRETT C J, MAMIYA J I, YAGER K G, et al. Photo-mechanical effects in azobenzene-containing soft materials?[J]. Soft Matter, 2007, 3(10): 1249-1261. | |
?[140] KAGEYAMA Y, TANIGAKE N, KUROKOME Y, et al. Macroscopic motion of supramolecular assemblies actuated by photoisomerization of azobenzene derivatives?[J]. Chemical Communications, 2013, 49(82): 9386-9388. | |
?[141] LV C, SUN X C, XIA H, et al. Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing?[J]. Sensors and Actuators B: Chemical, 2018, 259: 736-744. | |
?[142] KO B, BADLOE T, YANG Y, et al. Tunable metasurfaces via the humidity responsive swelling of single-step imprinted polyvinyl alcohol nanostructures?[J]. Nature Communications, 2022, 13(1): 6256. | |
?[143] GUPTA P, VERMANI K, GARG S. Hydrogels: from controlled release to pH-responsive drug delivery?[J]. Drug Discovery Today, 2002, 7(10): 569-579. | |
?[144] SHARPE L A, DAILY A M, HORAVA S D, et al. Therapeutic applications of hydrogels in oral drug delivery?[J]. Expert Opinion on Drug Delivery, 2014, 11(6): 901-915. | |
?[145] KHARE A R, PEPPAS N A, MASSIMO G, et al. Measurement of the swelling force in ionic polymeric networks I. Effect of pH and ionic content?[J]. Journal of Controlled Release, 1992, 22(3): 239-244. | |
?[146] PEPPAS N A, HILT J Z, KHADEMHOSSEINI A, et al. Hydrogels in biology and medicine: From molecular principles to bionanotechnology?[J]. Advanced Materials, 2006, 18(11): 1345-1360. | |
?[147] KWON I, BAE Y, OKANO T, et al. Stimuli sensitive polymers for drug delivery systems?[C]∥Proceedings of the International Symposium on Controlled Release of Bioactive Materials. Wiley Online Library, 1991: 304-305. | |
?[148] PEPPAS N A. Hydrogels in medicine and pharmacy?[M]. Boca Raton: CRC Press, 1986. | |
?[149] KHALID S, QADIR M, MASSUD A, et al. Effect of degree of cross-linking on swelling and drug release behaviour of poly (methyl methacrylate-co-itaconic acid)?[P (MMA/IA)] hydrogels for site specific drug delivery?[J]. Journal of Drug Delivery Science and Technology, 2009, 19(6): 413-418. | |
?[150] CASTELLóN E, ZAYAT M, LEVY D. Novel reversible humidity-responsive light transmission hybrid thin-film material based on a dispersive porous structure with embedded hygroscopic and deliquescent substances?[J]. Advanced Functional Materials, 2018, 28(27): 1704717. | |
?[151] ZHOU Y, LAYANI M, BOEY F Y C, et al. Electro‐thermochromic devices composed of self‐assembled transparent electrodes and hydrogels?[J]. Advanced Materials Technologies, 2016, 1(5): 1600069. | |
?[152] KRISHNA N D, KISHORE R S, ZHANG Y X, et al. A super hygroscopic hydrogel for harnessing ambient humidity for energy conservation and harvesting?[J]. Energy & Environmental Science, 2018, 11(8): 2179-2187. | |
?[153] 丁文全, 王力娜, 杨亚非, 等. 手性掺杂聚合物稳定VA液晶的光学性能?[J]. 液晶与显示, 2023, 38(12): 1645-1652. | |
DING W Q, WANG L N, YANG Y F, et al. Optical properties of chiral polymer stability VA liquid crystal?[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(12): 1645-1652 (in Chinese). | |
?[154] 张欣敏, 陆红波, 王琦, 等. 改变直流电场方向调控聚合物稳定胆甾相液晶的反射带隙?[J]. 液晶与显示, 2021, 36(8): 1075-1083. | |
ZHANG X M, LU H B, WANG Q, et al. Modulation of reflection band in polymer-stabilized cholesteric liquid crystals by changing DC electric field direction?[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(8): 1075-1083 (in Chinese). | |
?[155] 张艺瑜, 宋春风, 郭金宝. 基于聚合物稳定液晶的智能调光膜研究进展?[J]. 液晶与显示, 2021, 36(9): 1225. | |
ZHANG Y Y, SONG C F, GUO J B. Research progress of smart windows based on polymer stabilized liquid crystals?[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(9): 1225 (in Chinese). | |
?[156] LI H, XU J J, REN Y X, et al. Preparation of highly durable reverse-mode polymer-stabilized liquid crystal films with polymer walls?[J]. ACS Applied Materials & Interfaces, 2022, 15(1): 2228-2236. | |
?[157] ZHANG Z B, ZHANG R C, XU L G, et al. Visible and infrared optical modulation of PSLC smart films doped with ATO nanoparticles?[J]. Dalton Transactions, 2021, 50(29): 10033-10040. | |
?[158] RADKA BRIAN P, PANDE GAURAV K, WHITE TIMOTHY J. The contribution of network elasticity to electro-optic response in polymer stabilized cholesteric liquid crystals?[J]. Soft Matter, 2023, 19(25): 4634-4641. | |
?[159] KIKUCHI H, YOKOTA M, HISAKADO Y, et al. Polymer-stabilized liquid crystal blue phases?[J]. Nature Materials, 2002, 1(1): 64-68. | |
?[160] IWATA, SUZUKI, AMAYA, et al. Control of cross-linking polymerization kinetics and polymer aggregated structure in polymer-stabilized liquid crystalline blue phases?[J]. Macromolecules, 2009, 42(6): 2002-2008. | |
?[161] PAN, YU, ZHANG, et al. Effects on thermo‐optical properties of the composition of a polymer‐stabilised liquid crystal with a smectic A-chiral nematic phase transition?[J]. Liquid Crystals, 2008, 35(9): 1151-1160. | |
?[162] PAN G H, CAO H, GUO R W, et al. A polymer stabilized liquid crystal film with thermal switching characteristics between light transmission and adjustable light scattering?[J]. Optical Materials, 2009, 31(8): 1163-1166. | |
?[163] LAHIRI T, MAJUMDER T P. The effect of cross-linked chains of polymer network on the memory states of polymer stabilized ferroelectric molecules?[J]. Polymer, 2012, 53(10): 2121-2127. | |
?[164] LI X S, GUO Y Q, HUAI H, et al. The effect of monomer and chiral dopant content on reverse-mode polymer stabilized cholesteric liquid crystal display?[J]. Journal of Molecular Liquids, 2020, 309: 113112. | |
?[165] SHARMA V, KUMAR P, CHINKY, et al. Preparation and electrooptic study of reverse mode polymer dispersed liquid crystal: Performance augmentation with the doping of nanoparticles and dichroic dye?[J]. Journal of Applied Polymer Science, 2020, 137(22): 48745. | |
?[166] WU J J, TAN C P, SUN C H. Electro-optical properties of the normally transparent type anisotropic polymer dispersed liquid crystal films?[J]. Journal of Polymer Research, 1998, 5: 45-49. | |
?[167] NICOLETTA F P, DE FILPO G, CUPELLI D, et al. Orientation control of liquid crystal droplets dispersed in a polymer matrix?[J]. Applied Physics Letters, 2001, 79(26): 4325. | |
?[168] CHEN C W, BRIGEMAN A N, HO T J, et al. Normally transparent smart window based on electrically induced instability in dielectrically negative cholesteric liquid crystal?[J]. ACS Applied Materials & Interfaces, 2018, 8(3): 691-697. | |
?[169] ZHANG R C, SONG Z C, CAO W X, et al. Multispectral smart window: Dynamic light modulation and electromagnetic microwave shielding?[J]. Light, Science & Applications, 2024, 13(1): 223. | |
?[170] MADHURI P L, SHUDDHODANA, JUDEH Z M A, et al. Cochleate-doped liquid crystal as switchable metamaterial window mediated by molecular orientation modified aggregation?[J]. Particle & Particle Systems Characterization, 2020, 37(5): 2000067. | |
?[171] ABDULHALIM I, LAKSHMI MADHURI P, DIAB M, et al. Novel easy to fabricate liquid crystal composite with potential for electrically or thermally controlled transparency windows?[J]. Optics Express, 2019, 27(12): 17387-17401. | |
?[172] PAPPU L M, MARTIN-PALMA R J, MARTíN-ADRADOS B, et al. Voltage controlled scattering from porous silicon Mie-particles in liquid crystals?[J]. Journal of Molecular Liquids, 2019, 281: 108-116. | |
?[173] LIANG H X, ZHANG X P, WANG F Q, et al. Bio-inspired micropatterned thermochromic hydrogel for concurrent smart solar transmission and rapid visible-light stealth at all-working temperatures?[J]. Light, Science & Applications, 2024, 13(1): 202. | |
?[174] MAHPEYKAR S M, XIONG Q Y, WEI J, et al. Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management?[J]. Advanced Optical Materials, 2016, 4(7): 1106-1114. | |
?[175] XIE G X, LI Y F, WU C H, et al. Dual response multi-function smart window: An integrated system of thermochromic hydrogel and thermoelectric power generation module for simultaneous temperature regulation and power generation?[J]. Chemical Engineering Journal, 2024, 481: 148531. | |
?[176] GUO R, SHEN Y C, CHEN Y, et al. KCA/Na2SiO3/PNIPAm hydrogel with highly robust and strong solar modulation capability for thermochromic smart window?[J]. Chemical Engineering Journal, 2024, 486: 150194. | |
?[177] XIE G X, LI Y F, LUO J, et al. Scalable fabrication of thermochromic smart windows for broadening temperature ranges and their coupled thermoelectric power generation?[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(40): 14890-14901. | |
?[178] LEI Q X, YU W, XIE G X, et al. Novel photothermochromic smart window based on PNIPAm-glass-MXene/PAM with high shield, fast response, and excellent stability?[J]. Solar RRL, 2023, 7(7): 2200990. | |
?[179] SUDHAKARAN N, ABRAHAM M, PARVATHY P A, et al. Flexible and thermoresponsive AEMR-pNIPAM/Cs0.33WO3 composite hydrogel film with NIR shielding potential for smart windows and smart curtains?[J]. Chemical Engineering Journal, 2024, 490: 151603. | |
?[180] ZHOU Y, YOU Y X, LIAO X L, et al. Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices?[J]. Macromolecular Chemistry and Physics, 2020, 221(18): 2000185. | |
?[181] HU X, ZHANG X, YANG W, et al. Stable and scalable smart window based on polymer stabilized liquid crystals?[J]. Journal of Applied Polymer Science, 2020, 137(30): 48917. | |
?[182] HE Z M, YU P, ZHANG H M, et al. Silicon nanostructure-doped polymer/nematic liquid crystal composites for low voltage-driven smart windows?[J]. Nanotechnology, 2021, 33(8): 085205. | |
?[183] ZHAO C H, HU Y C, XU J J, et al. Research on the morphology, electro-optical properties and mechanical properties of electrochromic polymer-dispersed liquid crystalline films doped with anthraquinone dyes?[J]. Crystals, 2023, 13(5): 735. | |
?[184] KAUR M, MALIK P. New graphene oxide doped polymer dispersed liquid crystal nanocomposites targeted to eco-friendly and energy-efficient smart windows?[J]. Journal of Molecular Liquids, 2024, 410: 125565. | |
?[185] YAN J, FAN X W, LIU Y F, et al. Passive patterned polymer dispersed liquid crystal transparent display?[J]. Chinese Optics Letters, 2022, 20(1): 013301. | |
?[186] XIAN H Y, LI L, DING Y L, et al. Preparation and orthogonal analysis for dual-responsive electrochromic polymer dispersed liquid crystal devices?[J]. Polymers, 2023, 15(8): 1860. | |
?[187] 余莎莎, 陈星雨, 西华大学. 城市空中交通领域关键技术创新与挑战?[J]. 航空学报, 2024, 45(): 26-47. | |
YU S S, CHEN X Y, XI H. Innovation and challenge of key technologies in urban air traffic field?[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 26-47 (in Chinese). |
/
〈 |
|
〉 |