ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Life design method of high-temperature equipment based on dual-scale damage theory
Received date: 2024-12-24
Revised date: 2025-01-17
Accepted date: 2025-02-19
Online published: 2025-02-25
Supported by
National Key Research and Development Project(2022YFB4600019);National Natural Science Foundation of China(U21B2077);China National Postdoctoral Program for Innovative Talents(BX20230120)
The contradiction between the long-term safe operation of high-temperature structures and harsh service environment is becoming increasingly prominent. Creep-fatigue interaction damage has become increasingly prominent, leading to high failure rates of high-temperature components. In addition, the urgent demand for deep peak shaving in power generation units under carbon neutrality targets means that the critical high-temperature components face a lack of accurate life assessment methods. Traditional life design approaches based on single-scale or single-parameter are insufficient to simultaneously account for multi-axial stress effects and microstructural evolution in high-temperature structures, especially for the structures with inhomogeneous microstructures. In this paper, dual-scale modeling approach based on macro-continuum mechanics and micro-crystal plasticity is systematically introduced. Taking hole structure as an example, a life prediction method based on the dual-scale damage theory is presented. To facilitate the engineering application of the dual-scale theoretical framework, a creep-fatigue life prediction software considering surface strengthening effects is developed, enabling rapid damage assessment and life prediction for surface strengthening structures.
Kaishang LI , Haoqi FAN , Runzi WANG , Xiancheng ZHANG , Shantung TU . Life design method of high-temperature equipment based on dual-scale damage theory[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(5) : 531706 -531706 . DOI: 10.7527/S1000-6893.2025.31706
1 | 陈波, 李付国, 何敏. 延性金属材料损伤变量的实验表征方法研究[J]. 稀有金属材料与工程, 2011, 40(11): 2022-2025. |
CHEN B, LI F G, HE M. Experimental characterization of damage variables of ductile metal[J]. Rare Metal Materials and Engineering, 2011, 40(11): 2022-2025 (in Chinese). | |
2 | SUN L, ZHANG X C, WANG R Z, et al. Evaluation of fatigue and creep-fatigue damage levels on the basis of engineering damage mechanics approach[J]. International Journal of Fatigue, 2023, 166: 107277. |
3 | 涂善东, 王正东, 陈建钧, 等. 基于结构弱点分析的高温构件延寿修复技术[J]. 压力容器, 2004, 21(9): 1-8. |
TU S D, WANG Z D, CHEN J J, et al. Structural weakness spotting for life extension repair of high temperature components[J]. Pressure Vessel Technology, 2004, 21(9): 1-8 (in Chinese). | |
4 | JU Y B, KOYAMA M, SAWAGUCHI T, et al. Effects of ε-martensitic transformation on crack tip deformation, plastic damage accumulation, and slip plane cracking associated with low-cycle fatigue crack growth[J]. International Journal of Fatigue, 2017, 103: 533-545. |
5 | LONG X, CHONG K N, SU Y T, et al. Meso-scale low-cycle fatigue damage of polycrystalline nickel-based alloy by crystal plasticity finite element method[J]. International Journal of Fatigue, 2023, 175: 107778. |
6 | 孙李刚, 凌超, 陈浩, 等. 结构完整性分析中的多尺度力学方法[J]. 机械工程学报, 2021, 57(16): 106-121. |
SUN L G, LING C, CHEN H, et al. Application of multiscale mechanics methods in structural integrity analysis[J]. Journal of Mechanical Engineering, 2021, 57(16): 106-121 (in Chinese). | |
7 | BRIFFOD F, SHIRAIWA T, ENOKI M. Microstructure modeling and crystal plasticity simulations for the evaluation of fatigue crack initiation in α-iron specimen including an elliptic defect[J]. Materials Science and Engineering: A, 2017, 695: 165-177. |
8 | DONG Y W, ZHU Y L, WU F H, et al. A dual-scale elasto-viscoplastic constitutive model of metallic materials to describe thermo-mechanically coupled monotonic and cyclic deformations[J]. International Journal of Mechanical Sciences, 2022, 224: 107332. |
9 | MCDOWELL D L, DUNNE F P E. Microstructure-sensitive computational modeling of fatigue crack formation[J]. International Journal of Fatigue, 2010, 32(9): 1521-1542. |
10 | SAJURI Z BIN, MIYASHITA Y, HOSOKAI Y, et al. Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys[J]. International Journal of Mechanical Sciences, 2006, 48(2): 198-209. |
11 | ZHANG Y C, LI X L, YUAN S H, et al. High-cycle-fatigue properties of selective-laser-melted AlSi10Mg with multiple building directions[J]. International Journal of Mechanical Sciences, 2022, 224: 107336. |
12 | CHEN B, JIANG J, DUNNE F P E. Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation?[J]. International Journal of Plasticity, 2018, 101: 213-229. |
13 | ZHAO N L, WANG W Z, LIU Y Z. Intergranular mechanical behavior in a blade groove-like component by crystal plasticity model with cohesive zone model[J]. Engineering Fracture Mechanics, 2018, 201: 196-213. |
14 | TINGA T, BREKELMANS W A M, GEERS M G D. Application of a multiscale constitutive framework to real gas turbine components[J]. Advanced Materials Research, 2011, 278: 253-258. |
15 | WANG R Z, GU H H, ZHU S P, et al. A data-driven roadmap for creep-fatigue reliability assessment and its implementation in low-pressure turbine disk at elevated temperatures?[J]. Reliability Engineering & System Safety, 2022, 225: 108523. |
16 | GU H H, WANG R Z, ZHU S P, et al. Machine learning assisted probabilistic creep-fatigue damage assessment[J]. International Journal of Fatigue, 2022, 156: 106677. |
17 | COFFIN L F, TAVERNELLI J F. The cyclic straining and fatigue of metals[J]. Transactions of the Metallurgical Society of AIME, 1959, 215(5): 794-807. |
18 | MANSON S S, DOLAN T J. Thermal stress and low cycle fatigue[J]. Journal of Applied Mechanics, 1966, 33(4): 957. |
19 | OSTERGREN W J. A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue?[J]. Journal of Testing and Evaluation, 1976, 4(5): 327-339. |
20 | CHABOCHE J L, LESNE P M. A non-linear continuous fatigue damage model[J]. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11(1): 1-17. |
21 | SHANG D G, YAO W X. A nonlinear damage cumulative model for uniaxial fatigue[J]. International Journal of Fatigue, 1999, 21(2): 187-194. |
22 | NADERI M, KHONSARI M M. An experimental approach to low-cycle fatigue damage based on thermodynamic entropy[J]. International Journal of Solids and Structures, 2010, 47(6): 875-880. |
23 | KACHANOV L M. Rupture time under creep conditions[J]. International Journal of Fracture, 1999, 97(1): 11-18. |
24 | RABOTNOV Y, LECKIE FA, PRAGER W. Creep problems in structural members[J]. Journal of Applied Mechanics, 1970, 37(1): 249. |
25 | BETTEN J, SKLEPUS S, ZOLOCHEVSKY A. A creep damage model for initially isotropic materials with different properties in tension and compression[J]. Engineering Fracture Mechanics, 1998, 59(5): 623-641. |
26 | ZHANG L, LIU Y R, YANG Q. A creep model with damage based on internal variable theory and its fundamental properties[J]. Mechanics of Materials, 2014, 78: 44-55. |
27 | SOSNIN O V, GOREV B V, RUBANOV V V. Energy variant of theory of creep?[J]. Strength of Materials, 1976, 8(11): 1261-1266. |
28 | 王润梓. 基于能量密度耗散准则的蠕变—疲劳寿命预测模型及应用[D]. 上海: 华东理工大学, 2019. |
WANG R Z. Creep-fatigue life prediction model based on energy density dissipation criterion and its application[D]. Shanghai: East China University of Science and Technology, 2019 (in Chinese). | |
29 | WEN J F, TU S T, XUAN F Z, et al. Effects of stress level and stress state on creep ductility: Evaluation of different models[J]. Journal of Materials Science & Technology, 2016, 32(8): 695-704. |
30 | HALES R. The role of cavity growth mechanisms in determining creep-rupture under multiaxial stresses[J]. Fatigue & Fracture of Engineering Materials & Structures, 1994, 17(5): 579-591. |
31 | TAKAHASHI Y. Further evaluation of creep-fatigue life prediction methods for low-carbon nitrogen-added 316 stainless steel[J]. Journal of Pressure Vessel Technology, 1999, 121(2): 142-148. |
32 | WANG R Z, ZHANG X C, TU S T, et al. A modified strain energy density exhaustion model for creep-fatigue life prediction?[J]. International Journal of Fatigue, 2016, 90: 12-22. |
33 | WANG R Z, ZHANG X C, GONG J G, et al. Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650 ℃ based on cycle-by-cycle concept[J]. International Journal of Fatigue, 2017, 97: 114-123. |
34 | WANG R Z, WANG J, GONG J G, et al. Creep-fatigue behaviors and life assessments in two nickel-based superalloys[J]. Journal of Pressure Vessel Technology, 2018, 140(3): 031405. |
35 | SANGID M D. The physics of fatigue crack initiation[J]. International Journal of Fatigue, 2013, 57: 58-72. |
36 | POLáK J. Role of persistent slip bands and persistent slip markings in fatigue crack initiation in polycrystals[J]. Crystals, 2023, 13(2): 220. |
37 | LUKá? P, KUNZ L. Role of persistent slip bands in fatigue?[J]. Philosophical Magazine, 2004, 84(3-5): 317-330. |
38 | HSIUNG L M, STOLOFF N S. A point defect model for fatigue crack initiation in Ni3Al+B single crystals[J]. Acta Metallurgica et Materialia, 1990, 38(6): 1191-1200. |
39 | SANGID M D, MAIER H J, SEHITOGLU H. A physically based fatigue model for prediction of crack initiation from persistent slip bands in polycrystals[J]. Acta Materialia, 2011, 59(1): 328-341. |
40 | BENNETT V P, MCDOWELL D L. Polycrystal orientation distribution effects on microslip in high cycle fatigue[J]. International Journal of Fatigue, 2003, 25(1): 27-39. |
41 | HALLBERG H, SIGMUND KYRRE ?, SKALLERUD B. Crystal plasticity modeling of microstructure influence on fatigue crack initiation in extruded Al6082-T6 with surface irregularities[J]. International Journal of Fatigue, 2018, 111: 16-32. |
42 | GU T, STOPKA K S, XU C, et al. Prediction of maximum fatigue indicator parameters for duplex Ti-6Al-4V using extreme value theory[J]. Acta Materialia, 2020, 188: 504-516. |
43 | MCDOWELL D L. Microstructure-sensitive computational fatigue analysis[M]∥Handbook of Materials Modeling. Dordrecht: Springer Netherlands, 2005: 1193-1214. |
44 | MANONUKUL A, DUNNE F P E. High-and low-cycle fatigue crack initiation using polycrystal plasticity[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2004, 460(2047): 1881-1903. |
45 | CRUZADO A, LUCARINI S, LLORCA J, et al. Crystal plasticity simulation of the effect of grain size on the fatigue behavior of polycrystalline Inconel 718[J]. International Journal of Fatigue, 2018, 113: 236-245. |
46 | CRUZADO A, LUCARINI S, LLORCA J, et al. Microstructure-based fatigue life model of metallic alloys with bilinear Coffin-Manson behavior[J]. International Journal of Fatigue, 2018, 107: 40-48. |
47 | HULL D, RIMMER D E. The growth of grain-boundary voids under stress[J]. Philosophical Magazine, 1959, 4(42): 673-687. |
48 | ROODPOSHTI P S, SARKAR A, MURTY K L, et al. Grain boundary sliding mechanism during high temperature deformation of AZ31 Magnesium alloy[J]. Materials Science and Engineering: A, 2016, 669: 171-177. |
49 | NEEDLEMAN A, RICE J R. Plastic creep flow effects in the diffusive cavitation of grain boundaries[M]∥Perspectives in Creep Fracture. Amsterdam: Elsevier, 1983: 107-124. |
50 | NEEDLEMAN A, ASARO R J, LEMONDS J, et al. Finite element analysis of crystalline solids[J]. Computer Methods in Applied Mechanics and Engineering, 1985, 52(1-3): 689-708. |
51 | ZHANG W, WANG X, WANG Y Y, et al. Type Ⅳ failure in weldment of creep resistant ferritic alloys: Ⅱ?. Creep fracture and lifetime prediction[J]. Journal of the Mechanics and Physics of Solids, 2020, 134: 103775. |
52 | NEEDHAM N G, GLADMAN T. Nucleation and growth of creep cavities in a Type 347 steel[J]. Metal Science, 1980, 14(2): 64-72. |
53 | WEN J F, SRIVASTAVA A, BENZERGA A, et al. Creep crack growth by grain boundary cavitation under monotonic and cyclic loading[J]. Journal of the Mechanics and Physics of Solids, 2017, 108: 68-84. |
54 | HOLDSWORTH S. Creep-fatigue failure diagnosis[J]. Materials, 2015, 8(11): 7757-7769. |
55 | QU S, AN X H, YANG H J, et al. Microstructural evolution and mechanical properties of Cu-Al alloys subjected to equal channel angular pressing[J]. Acta Materialia, 2009, 57(5): 1586-1601. |
56 | YANG X F, XI Y Z, HE C Y, et al. Chemical short-range order strengthening mechanism in CoCrNi medium-entropy alloy under nanoindentation[J]. Scripta Materialia, 2022, 209: 114364. |
57 | VENKATARAMAN A, SANGID M D. A crystal plasticity model with an atomistically informed description of grain boundary sliding for improved predictions of deformation fields?[J]. Computational Materials Science, 2021, 197: 110589. |
58 | ZHAO Y L, SONG Q H, JI H S, et al. Multi-scale modeling method for polycrystalline materials considering grain boundary misorientation angle[J]. Materials & Design, 2022, 221: 110998. |
59 | LI D F, BARRETT R A, O’DONOGHUE P E, et al. A multi-scale crystal plasticity model for cyclic plasticity and low-cycle fatigue in a precipitate-strengthened steel at elevated temperature[J]. Journal of the Mechanics and Physics of Solids, 2017, 101: 44-62. |
60 | GOH C H, WALLACE J M, NEU R W, et al. Polycrystal plasticity simulations of fretting fatigue[J]. International Journal of Fatigue, 2001, 23: 423-435. |
61 | MUSINSKI W D, MCDOWELL D L. Microstructure-sensitive probabilistic modeling of HCF crack initiation and early crack growth in Ni-base superalloy IN100 notched components?[J]. International Journal of Fatigue, 2012, 37: 41-53. |
62 | SHANGGUAN W B, LU Z H. Experimental study and simulation of a hydraulic engine mount with fully coupled fluid-structure interaction finite element analysis model[J]. Computers & Structures, 2004, 82(22): 1751-1771. |
63 | ZHU S P, LIU Q, PENG W W, et al. Computational-experimental approaches for fatigue reliability assessment of turbine bladed disks[J]. International Journal of Mechanical Sciences, 2018, 142: 502-517. |
64 | LI K S, WANG R Z, WANG J,et al. Investigation of creep-fatigue crack initiation by using an optimal dual-scale modelling approach[J].International Journal of Fatigue, 2023, 172: 107621. |
65 | MEADE E D, SUN F W, TIERNAN P, et al. A multiscale experimentally-based finite element model to predict microstructure and damage evolution in martensitic steels[J]. International Journal of Plasticity, 2021, 139: 102966. |
66 | MEADE E D, SUN F, TIERNAN P, et al. Experimental study and multiscale modelling of the high temperature deformation of tempered martensite under multiaxial loading?[J]. Materials Science and Engineering: A, 2018, 737: 383-392. |
67 | JACOB A, MEHMANPARAST A. Sensitivity analysis of material microstructure effects on predicted crack paths using finite element simulations[J]. Journal of Multiscale Modelling, 2016, 7(2): 1650003. |
68 | OWOLABI G M, PRASANNAVENKATESAN R, MCDOWELL D L. Probabilistic framework for a microstructure-sensitive fatigue Notch factor[J]. International Journal of Fatigue, 2010, 32(8): 1378-1388. |
69 | ZHAO Q, ABDEL WAHAB M, LING Y, et al. Fatigue crack propagation within Al-Cu-Mg single crystals based on crystal plasticity and XFEM combined with cohesive zone model[J]. Materials & Design, 2021, 210: 110015. |
70 | HAN Q N, QIU W H, HE Z W, et al. The effect of crystal orientation on fretting fatigue crack formation in Ni-based single-crystal superalloys: SEM observation and crystal plasticity finite element simulation[J]. Tribology International, 2018, 125: 209-219. |
71 | SHANG X Q, ZHANG H M, CUI Z S, et al. A multiscale investigation into the effect of grain size on void evolution and ductile fracture: Experiments and crystal plasticity modeling[J]. International Journal of Plasticity, 2020, 125: 133-149. |
72 | ALABORT E, BARBA D, SULZER S, et al. Grain boundary properties of a nickel-based superalloy: Characterisation and modelling[J]. Acta Materialia, 2018, 151: 377-394. |
73 | PEI H Q, YANG Y Z, GU S N, et al. Study on oxidation-creep behavior of a Ni-based single crystal superalloy based on crystal plasticity theory?[J]. Materials Science and Engineering: A, 2022, 839: 142834. |
74 | CARPINTERI A, PAGGI M. Asymptotic analysis in linear elasticity: From the pioneering studies by wieghardt and Irwin until today?[J]. Engineering Fracture Mechanics, 2009, 76(12): 1771-1784. |
75 | YUAN G J, WANG R Z, GONG C Y, et al. Investigations of micro-Notch effect on small fatigue crack initiation behaviour in nickel-based alloy GH4169: Experiments and simulations?[J]. International Journal of Fatigue, 2020, 136: 105578. |
76 | SUN F W, MEADE E D, O′DOWD N P. Microscale modelling of the deformation of a martensitic steel using the Voronoi tessellation method[J]. Journal of the Mechanics and Physics of Solids, 2018, 113: 35-55. |
77 | RUIZ C, NOAILLY J, LACROIX D. Material property discontinuities in intervertebral disc porohyperelastic finite element models generate numerical instabilities due to volumetric strain variations[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 26: 1-10. |
78 | BAUER S, LACKNER R. Gradient-based adaptive discontinuity layout optimization for the prediction of strength properties in matrix-inclusion materials[J]. International Journal of Solids and Structures, 2015, 63: 82-98. |
79 | SKELTON R P. The energy density exhaustion method for assessing the creep-fatigue lives of specimens and components[J]. Materials at High Temperatures, 2013, 30(3): 183-201. |
80 | WANG R Z, GUO S J, CHEN H F, et al. Multi-axial creep-fatigue life prediction considering history-dependent damage evolution: A new numerical procedure and experimental validation[J]. Journal of the Mechanics and Physics of Solids, 2019, 131: 313-336. |
81 | HUO J Z, SUN D B, WU H Y, et al. Multi-axis low-cycle creep/fatigue life prediction of high-pressure turbine blades based on a new critical plane damage parameter?[J]. Engineering Failure Analysis, 2019, 106: 104159. |
82 | BENEDETTI M, BERTO F, LE BONE L, et al. A novel Strain-Energy-Density based fatigue criterion accounting for mean stress and plasticity effects on the medium-to-high-cycle uniaxial fatigue strength of plain and notched components[J]. International Journal of Fatigue, 2020, 133: 105397. |
83 | KIM T W, KANG D H, YEOM J T, et al. Continuum damage mechanics-based creep-fatigue-interacted life prediction of nickel-based superalloy at high temperature[J]. Scripta Materialia, 2007, 57(12): 1149-1152. |
84 | PARK S, JUNG J, CHO W, et al. Predictive dual-scale finite element simulation for hole expansion failure of ferrite-bainite steel[J]. International Journal of Plasticity, 2021, 136: 102900. |
85 | WANG R Z, ZHU S P, WANG J, et al. High temperature fatigue and creep-fatigue behaviors in a Ni-based superalloy: Damage mechanisms and life assessment[J]. International Journal of Fatigue, 2019, 118: 8-21. |
86 | HILL R, RICE J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain[J]. Journal of the Mechanics and Physics of Solids, 1972, 20(6): 401-413. |
87 | ASARO R J, RICE J R. Strain localization in ductile single crystals[J]. Journal of the Mechanics and Physics of Solids, 1977, 25(5): 309-338. |
88 | YUAN G J, ZHANG X C, CHEN B, et al. Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach[J]. Journal of Materials Science & Technology, 2020, 38: 28-38. |
89 | LI D F, GOLDEN B J, O’DOWD N P. Multiscale modelling of mechanical response in a martensitic steel: A micromechanical and length-scale-dependent framework for precipitate hardening[J]. Acta Materialia, 2014, 80: 445-456. |
90 | FOURNIER B, DALLE F, SAUZAY M, et al. Comparison of various 9-12% Cr steels under fatigue and creep-fatigue loadings at high temperature[J]. Materials Science and Engineering: A, 2011, 528(22-23): 6934-6945. |
91 | CARROLL L J, CABET C, CARROLL M C, et al. The development of microstructural damage during high temperature creep-fatigue of a nickel alloy?[J]. International Journal of Fatigue, 2013, 47: 115-125. |
92 | ZHANG S L, XUAN F Z. Interaction of cyclic softening and stress relaxation of 9-12% Cr steel under strain-controlled fatigue-creep condition: Experimental and modeling[J]. International Journal of Plasticity, 2017, 98: 45-64. |
93 | FREDERICK C O, ARMSTRONG P J. A mathematical representation of the multiaxial Bauschinger effect[J]. Materials at High Temperatures, 2007, 24(1): 1-26. |
94 | ZHANG K S, JU J W, LI Z H, et al. Micromechanics based fatigue life prediction of a polycrystalline metal applying crystal plasticity?[J]. Mechanics of Materials, 2015, 85: 16-37. |
95 | LI K S, CHENG L Y, XU Y L, et al. A dual-scale modelling approach for creep-fatigue crack initiation life prediction of holed structure in a nickel-based superalloy[J]. International Journal of Fatigue, 2022, 154: 106522. |
96 | RAMULU M, KUNAPORN S, JENKINS M, et al. Fatigue performance of high-pressure waterjet-peened aluminum alloy[J]. Journal of Pressure Vessel Technology, 2002, 124(1): 118-123. |
97 | SOYAMA H, PARK J D, SAKA M. Use of cavitating jet for introducing compressive residual stress[J]. Journal of Manufacturing Science and Engineering, 2000, 122(1): 83-89. |
98 | RAMULU M, KUNAPORN S, AROLA D, et al. Waterjet machining and peening of metals?[J]. Journal of Pressure Vessel Technology, 2000, 122(1): 90-95. |
99 | YAO S L, LI W, WANG J S, et al. Surface strengthening in confined spaces: A novel deflecting abrasive waterjet peening for improving the surface integrity of nickel-based superalloys GH4169[J]. Journal of Manufacturing Processes, 2023, 85: 417-433. |
100 | LI K S, YAO S L, CHENG L Y, et al. Creep-fatigue life prediction of notched structure after an advanced surface strengthening treatment in a nickel-based superalloy at 650 ℃[J]. International Journal of Plasticity, 2024, 173: 103861. |
101 | LIN Y, PAN J, ZHOU H F, et al. Mechanical properties and optimal grain size distribution profile of gradient grained nickel[J]. Acta Materialia, 2018, 153: 279-289. |
102 | SHIELDS M D, ZHANG J X. The generalization of Latin hypercube sampling[J]. Reliability Engineering & System Safety, 2016, 148: 96-108. |
103 | MCCLELLAND J L, RUMELHART D E. Explorations in parallel distributed processing:A handbook of models, programs and exercise[M]. Cambridge: The MIT Press, 1989:121-153. |
104 | CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. |
/
〈 |
|
〉 |