ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Integration of multirotor aerodynamic interference in UAM flight dynamics model
Received date: 2024-09-30
Revised date: 2024-10-23
Accepted date: 2025-02-12
Online published: 2025-02-18
Supported by
National Natural Science Foundation of China(11902052);Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX1592);Open Project of the Key Laboratory of Rotor Aerodynamics, China Aerodynamics Research and Development Center(RAL202302-3)
To address the challenge of strong aerodynamic interference in multi-rotor electric Vertical Take-Off and Landing (eVTOL) aircraft and the difficulty of quickly and efficiently analyzing its impact on flight performance and flight quality, an Urban Air Mobility (UAM) flight dynamics model integrated with multi-rotor aerodynamic interference is developed. First, by combining classical vortex theory and dynamic inflow model, a dynamic inflow model suitable for flight dynamics analysis of multirotor is established, accounting for the effects of coupling between rotor flapping and rigid-body motion, thus forming a flight dynamics model that incorporates multirotor aerodynamic interference. Then, the accuracy of this model is validated through comparison with data from international literature, and the impact of multirotor aerodynamic interference on the equilibrium characteristics and required power characteristics of the aircraft is analyzed. Finally, a small-disturbance linearized model is used to study the effect of multirotor aerodynamic interference on the stability of the aircraft. The results show that aerodynamic interference between rotors mainly affects the flight performance and handling qualities of the aircraft in low- to medium-speed flight conditions. Aerodynamic interference slightly reduces the required power of the front rotors while significantly increasing that of the rear rotors, substantially altering the aircraft’s longitudinal control characteristics. Multirotor aerodynamic interference significantly enhances the speed and yaw static stability during hover/low-speed flight and improves the lateral static stability in medium-speed flight; however, it causes the angle-of-attack static stability to become unstable, leading to a deterioration in dynamic stability for the heave and spiral modes.
Yeping WANG , Honglei JI , Qingyu KANG , Haoxuan DENG , Chang WANG . Integration of multirotor aerodynamic interference in UAM flight dynamics model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(11) : 531280 -531280 . DOI: 10.7527/S1000-6893.2025.31280
[1] | 邓景辉. 电动垂直起降飞行器的技术现状与发展[J]. 航空学报, 2024, 45(5): 529937. |
DENG J H. Technical status and development of electric vertical take-off and landing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529937 (in Chinese). | |
[2] | ZHOU P, CHEN R L, YUAN Y, et al. Aerodynamic interference on trim characteristics of quad-tiltrotor aircraft[J]. Aerospace, 2022, 9(5): 262. |
[3] | 王永杰. 交叉式双旋翼直升机飞行特性研究[D]. 南京: 南京航空航天大学, 2021: 7-14. |
WANG Y J. Study on flight characteristics of cross twin-rotor helicopter[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 7-14 (in Chinese). | |
[4] | 张夏阳, 罗彬, 招启军, 等. 倾转四旋翼机多涡系气动干扰非定常特性[J/OL]. 航空动力学报, (2024-09-03)[2024-09-04]. . |
ZHANG X Y, LUO B, ZHAO Q J, et al. Unsteady aerodynamic interference of tilt-quadrotor due to multi-vortex effect[J/OL]. Journal of Aerospace Power, (2024-09-03) [2024-09-04]. (in Chinese). | |
[5] | DIAZ P V, JOHNSON W, AHMAD J, et al. The side-by-side urban air taxi concept[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
[6] | QI H T, XU G H, LU C L, et al. Computational investigation on unsteady loads of high-speed rigid coaxial rotor with high-efficient trim model[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(1): 16-30. |
[7] | QI H T, XU G H, LU C L, et al. A study of coaxial rotor aerodynamic interaction mechanism in hover with high-efficient trim model[J]. Aerospace Science and Technology, 2019, 84: 1116-1130. |
[8] | RUDDELL A J. Advancing blade concept (ABC?) development[J]. Journal of the American Helicopter Society, 1977, 22(1): 13-23. |
[9] | RUDDELL A J, MACRINO J A. Advancing blade con-cept (ABC) high speed development[C]∥American Helicopter Society 36th Annual Forum. 1980. |
[10] | 聂博文, 王亮权, 黄志银, 等. 复合式高速无人直升机飞行动力学建模与控制策略设计[J]. 航空学报, 2024, 45(9): 529848. |
NIE B W, WANG L Q, HUANG Z Y, et al. Flight dynamics modeling and control strategy design of compound high-speed unmanned helicopter [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529848 (in Chinese). | |
[11] | 王梓旭, 李攀, 王冰, 等. 倾转旋翼飞行器运动稳定性变化规律及其影响机理[J/OL]. 航空动力学报, (2024-03-05) [2024-09-04]. . |
WANG Z X, LI P, WANG B, et al. Variation of tilt-rotor aircraft motion stability and its influence mechanism. Journal of Aerospace Power, (2024-03-05) [2024-09-04]. (in Chinese). | |
[12] | 王梓旭, 李攀, 鲁可, 等. 共轴刚性旋翼高速直升机配平策略优化设计[J]. 航空学报, 2024, 45(9): 529069. |
WANG Z X, LI P, LU K, et al. Optimized design of trim strategy for coaxial rigid rotor high-speed helicopter[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529069 (in Chinese). | |
[13] | PARK S, IM B, LEE D, et al. Aerodynamic interference analysis for a nonoverlapping multirotor UAV based on dynamic vortex tube[J]. Journal of the American Helicopter Society, 2023, 68(4): 42010-42030. |
[14] | 袁野, 陈仁良, 李攀. 基于涡环尾迹模型的共轴刚性旋翼直升机飞行动力学建模[J]. 航空学报, 2018, 39(3): 121564. |
YUAN Y, CHEN R L, LI P. Flight dynamic modelling for coaxial rigid rotor helicopter using vortex-ring wake model[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 121564 (in Chinese). | |
[15] | 赵珅宁, 李攀, 张亚飞, 等. 一种新的旋翼动态尾迹模型研究[J]. 南京航空航天大学学报, 2016, 48(2): 212-217. |
ZHAO S N, LI P, ZHANG Y F, et al. Study on new rotor dynamic wake model[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(2): 212-217 (in Chinese). | |
[16] | SINGH P, FRIEDMANN P P. Application of vortex methods to coaxial rotor wake and load calculations[C]∥55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017. |
[17] | ZHAO J G, HE C J. A finite state dynamic wake model enhanced with vortex particle method–derived modeling parameters for coaxial rotor simulation and analysis[J]. Journal of the American Helicopter Society, 2016, 61(2): 1-9. |
[18] | KONG Y B, PRASAD J V R, SANKAR L N, et al. Finite state inflow flow model for coaxial rotor configuration[J]. Journal of the American Helicopter Society, 2020, 65(3): 1-11. |
[19] | GUNER F, PRASAD J V R, PETERS D A. An approximate finite state dynamic wake model for predictions of inflow below the rotor[J]. Journal of the American Helicopter Society, 2021, 66(3): 1-10. |
[20] | 王冶平, 吉洪蕾, 周攀, 等. 基于涡管模型的倾转四旋翼气动干扰快速分析[J]. 航空学报, 2025, 46(2): 130705. |
WANG Y P, JI H L, ZHOU P, et al. Fast analysis of aerodynamic interference for quad-tiltrotor based on vortex tube model[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(2): 130705 (in Chinese). | |
[21] | VATISTAS G H. New model for intense self-similar vortices[J]. Journal of Propulsion and Power, 1998, 14(4): 462-469. |
[22] | VATISTAS G H, KOZEL V, MIH W C. A simpler model for concentrated vortices[J]. Experiments in Fluids, 1991, 11(1): 73-76. |
[23] | PETERS D A, HAQUANG N. Technical note: Dynamic inflow for practical applications[J]. Journal of the American Helicopter Society, 1988, 33(4): 64-68. |
[24] | 陈仁良, 李攀, 吴伟, 等. 直升机飞行动力学数学建模问题[J]. 航空学报, 2017, 38(7): 520915. |
CHEN R L, LI P, WU W, et al. A review of mathematical modeling of helicopter flight dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 520915 (in Chinese). | |
[25] | 齐浩然, 齐晓慧. 风扰下的四旋翼无人机LADRC控制律设计[J]. 飞行力学, 2018, 36(2): 47-51. |
QI H R, QI X H. Research on quadrotor UAV based on linear active disturbance rejection control technique under wind-disturbance[J]. Flight Dynamics, 2018, 36(2): 47-51 (in Chinese). | |
[26] | JOHNSON W, SILVA C. NASA concept vehicles and the engineering of advanced air mobility aircraft[J]. The Aeronautical Journal, 2022, 126(1295): 59-91. |
[27] | BOSCHITSCH A, QUACKENBUSH T, WACHSPRESS D. First-principles free-vortex wake analysis for helicopters and tiltrotors[C]∥59th Annual Forum Proceedings; Phoenix, Arizona. 2003, 59(2): 1763-1786. |
[28] | JOHNSON W. Technology drivers in the development of CAMRAD II[C]∥American Helicopter Society Aeromechanics Specialists Conference; San Francisco, California. 1994. |
[29] | MALPICA C A. Handling qualities analysis of blade pitch and rotor speed controlled eVTOL quadrotor concepts for urban air mobility[C]∥VFS International Powered Lift Conference; San Jose, CA. 2020: 118-132. |
/
〈 |
|
〉 |