Solid Mechanics and Vehicle Conceptual Design

Anti-bird impact design of aircraft structure via bulding block approach

  • Tao SUO ,
  • Yulong LI
Expand
  • 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.Institute of Extreme Mechanics,Northwestern Polytechnical University,Xi’an 710072,China
    3.National Key Laboratory of Aircraft Configuration Design,Xi’an 710072,China
    4.Joint International Research Laboratory of Impact Dynamics and its Engineering Application,Xi’an 710072,China
    5.School of Civil Aviation,Northwestern Polytechnical University,Xi’an 710072,China
    6.National Key Laboratory of Strength and Structural Integrity,Xi’an 710072,China
E-mail: suotao@nwpu.edu.cn

Received date: 2024-11-12

  Revised date: 2024-12-02

  Accepted date: 2025-01-10

  Online published: 2025-02-12

Supported by

National Natural Science Foundation of China(12025205)

Abstract

In the field of aerospace engineering, aircraft inevitably encounter bird strikes during their service life, posing a direct threat to flight safety and potentially leading to catastrophic accidents involving the loss of aircraft and human lives. Due to the complexity of impact dynamics, bird strike resistance design for aircraft structures necessitates an integrated approach combining design analysis, numerical simulation, and experimental validation. However, the lack of dynamic performance and constitutive parameters for structural materials, as well as limitations in experimental methods and instrumentation, resulted in lengthy and inefficient impact resistance design. In recent years, the Impact dynamics research team at Northwestern Polytechnical University has conducted a series of innovative studies focusing on bird strike resistance design for aircraft structures, based on building block approach. This work addresses the determination of dynamic properties and constitutive parameters of structural materials and bird, the dynamic failure behavior of riveted joints, and the development of a novel anti-bird strike design concept and its application in the bird strike resistance design of a civil aircraft.

Cite this article

Tao SUO , Yulong LI . Anti-bird impact design of aircraft structure via bulding block approach[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(5) : 531524 -531524 . DOI: 10.7527/S1000-6893.2025.31524

References

1 中国民用航空局. 运输类飞机适航标准: CCAR-25-R3—2001 [S].北京: 中国民用航空局,2001.
  Civil Aviation Administration of China. Airworthiness standards for transport aircraft: CCAR-25-R3—2001 [S].Beijing: Civil Aviation Administration of China,2001 (in Chinese).
2 Federal Aviation Administration. Airworthiness standards: Transport category airplanes: 14 CFR Parts 25 [S]. Washington, D.C.: FAA, 2013.
3 European Aviation Safety Agency. Compliance with CS-25 bird strike requirements: CM-S-001 Issue: 01 [R]. Cologne: EASA, 2012.
4 李兴无. 航空发动机关键材料服役性能“积木式” 评价技术浅析[J]. 航空动力2020(4): 31-34.
  LI X W. Building block approach in the evaluation of in-service performance of key aero engine materials[J]. Aerospace Power2020(4): 31-34 (in Chinese).
5 林建鸿. 积木式方法与试验金字塔的历史沿革与发展趋势[J]. 航空工程进展202314(5): 8-18.
  LIN J H. The historical developments and trendencies of building block approach and testing pyramid[J]. Advances in Aeronautical Science and Engineering202314(5): 8-18 (in Chinese).
6 JOHNSON G R, COOK W. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics198321: 541-548.
7 COWPER G, SYMONDS P. Strain-hardening and strain-rate effects in the impact loading of cantilever beams[R]. Brown University Division of Applied Mathematics, 1957.
8 ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations?[J]. Journal of Applied Physics198761(5): 1816-1825.
9 XUE L, WIERZBICKI T. Numerical simulation of fracture mode transition in ductile plates[J]. International Journal of Solids and Structures200946(6): 1423-1435.
10 BAI Y L, WIERZBICKI T. Forming severity concept for predicting sheet necking under complex loading histories[J]. International Journal of Mechanical Sciences200850(6): 1012-1022.
11 HANCOCK J W, MACKENZIE A C. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states[J]. Journal of the Mechanics and Physics of Solids197624(2-3): 147-160.
12 BAO Y B, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences200446(1): 81-98.
13 TVERGAARD V, NEEDLEMAN A. Effect of material rate sensitivity on failure modes in the Charpy V-Notch test[J]. Journal of the Mechanics and Physics of Solids198634(3): 213-241.
14 RICE J R, TRACEY D M. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of the Mechanics and Physics of Solids196917(3): 201-217.
15 BAI Y L, WIERZBICKI T. A new model of metal plasticity and fracture with pressure and Lode dependence[J]. International Journal of Plasticity200824(6): 1071-1096.
16 LOU Y S, YOON J W, HUH H. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality?[J]. International Journal of Plasticity201454: 56-80.
17 BAI Y L, WIERZBICKI T. Application of extended Mohr-Coulomb criterion to ductile fracture[J]. International Journal of Fracture2010161(1): 1-20.
18 JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics198521(1): 31-48.
19 ZHANG C, SUO T, TAN W L, et al. An experimental method for determination of dynamic mechanical behavior of materials at high temperatures[J]. International Journal of Impact Engineering2017102: 27-35.
20 DOU Q B, WU K R, SUO T, et al. Experimental methods for determination of mechanical behaviors of materials at high temperatures via the split Hopkinson bars[J]. Acta Mechanica Sinica202036(6): 1275-1293.
21 WANG C X, SUO T, LI Y L, et al. High-velocity impact responses of 2618 aluminum plates for engine containment systems under combined actions of projectile form and oblique angle[J]. Chinese Journal of Aeronautics201932(6): 1428-1441.
22 HILL R. A self-consistent mechanics of composite materials[J]. Journal of the Mechanics and Physics of Solids196513(4): 213-222.
23 TSAI S W, WU E M. A general theory of strength for anisotropic materials?[J]. Journal of Composite Materials19715(1): 58-80.
24 沈观林, 胡更开. 复合材料力学[M]. 北京: 清华大学出版社, 2006: 50-66.
  SHEN G L, HU G K. Mechanics of composite materials[M]. Beijing: Tsinghua University Press, 2006:50-66 (in Chinese).
25 PUCK A, SCHüRMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models?[J]. Composites Science and Technology200262(12-13): 1633-1662.
26 DAVILA C G, CAMANHO P P, ROSE C A. Failure criteria for FRP laminates[J]. Journal of Composite Materials200539(4): 323-345.
27 PINHO S, DáVILA C, CAMANHO P, et al. Failure models and criteria for frp under in-plane or three-dimensional stress states including shear non-linearity:NASA-213530[R]. Washington, D.C.: NASA, 2005.
28 PINHO S T, DARVIZEH R, ROBINSON P, et al. Material and structural response of polymer-matrix fibre-reinforced composites[J]. Journal of Composite Materials201246(19-20): 2313-2341.
29 CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations?[J]. Journal of Composite Materials198721(9): 834-855.
30 HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics198047(2): 329-334.
31 HOU J P, PETRINIC N, RUIZ C, et al. Prediction of impact damage in composite plates[J]. Composites Science and Technology200060(2): 273-281.
32 CHOI H Y, CHANG F K. A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact[J]. Journal of Composite Materials199226(14): 2134-2169.
33 LADEVEZE P, LEDANTEC E. Damage modelling of the elementary ply for laminated composites[J]. Composites Science and Technology199243(3): 257-267.
34 WANG C X, SUO T, HANG C, et al. Influence of in-plane tensile preloads on impact responses of composite laminated plates[J]. International Journal of Mechanical Sciences2019161: 105012.
35 WILBECK J S, BARBER J P. Bird impacting loading[J]. The Shock and Vibration Bulletin197848: 115-122.
36 BARBER J P, BOEHMAN L I, WILBECK J S. The modeling of bird impact loads: AD-A065049 [R].1978.
37 尹晶, 范尔宁. 鸟撞击载荷的冲量与时间因素的确定[J]. 南京航空航天大学学报199426(1): 68-74.
  YIN J, FAN E N. The determination of impulse and temporal factor of bird impact loads[J]. Journal of Nanjing University of Aeronautics & Astronautics199426(1): 68-74 (in Chinese).
38 张志林, 姚卫星. 飞机风挡鸟撞动响应分析方法研究[J]. 航空学报200425(6): 577-580.
  ZHANG Z L, YAO W X. Research on dynamic analysis of bird impact on aircraft windshield?[J]. Acta Aeronautica et Astronautica Sinica200425(6): 577-580 (in Chinese).
39 王富生, 李立州, 王新军, 等. 鸟体材料参数的一种反演方法[J]. 航空学报200728(2): 344-347.
  WANG F S, LI L Z, WANG X J, et al. A method to identify bird’s material parameters[J]. Acta Aeronautica et Astronautica Sinica200728(2): 344-347 (in Chinese).
40 刘军, 李玉龙, 郭伟国, 等. 鸟体本构模型参数反演Ⅰ: 鸟撞平板试验研究[J]. 航空学报201132(5): 802-811.
  LIU J, LI Y L, GUO W G, et al. Parameters inversion on bird constitutive model part Ⅰ: Study on experiment of bird striking on plate[J]. Acta Aeronautica et Astronautica Sinica201132(5): 802-811 (in Chinese).
41 刘军, 李玉龙, 石霄鹏, 等. 鸟体本构模型参数反演Ⅱ: 模型参数反演研究[J]. 航空学报201132(5): 812-821.
  LIU J, LI Y L, SHI X P, et al. Parameters inversion on bird constitutive model part Ⅱ?: Study on model parameters inversion[J]. Acta Aeronautica et Astronautica Sinica201132(5): 812-821 (in Chinese).
42 KULAK G, FISHER J, STRUIK J H A. Guide to design criteria for bolted and riveted joints[M]. 2nd ed. New York: Wiley, 1987: 20-33.
43 PORCARO R, HANSSEN A G, AALBERG A, et al. Joining of aluminium using self-piercing riveting: Testing, modelling and analysis[J]. International Journal of Crashworthiness20049(2): 141-154.
44 PORCARO R, HANSSEN A G, LANGSETH M, et al. The behaviour of a self-piercing riveted connection under quasi-static loading conditions[J]. International Journal of Solids and Structures200643(17): 5110-5131.
45 PORCARO R, HANSSEN A G, LANGSETH M, et al. An experimental investigation on the behaviour of self-piercing riveted connections in aluminium alloy AA6060[J]. International Journal of Crashworthiness200611(5): 397-417.
46 BIER M, SOMMER S. Advanced investigations on a simplified modeling method of self-piercing riveted joints for crash simulation?[C]?∥Presentation held at 11. LS-DYNA Forum. 2012.
47 WOOD P K C, SCHLEY C A, WILLIAMS M A, et al. A model to describe the high rate performance of self-piercing riveted joints in sheet aluminium[J]. Materials & Design201132(4): 2246-2259.
48 LIU X C, GUO J, BAI C Y, et al. Drop test and crash simulation of a civil airplane fuselage section[J]. Chinese Journal of Aeronautics201528(2): 447-456.
49 PORCARO R, LANGSETH M, HANSSEN A G, et al. Crashworthiness of self-piercing riveted connections[J]. International Journal of Impact Engineering200835(11): 1251-1266.
50 杨沛, 郭亚洲, 李玉龙. 航空铆钉的动态力学性能测试[J]. 航空学报201435(11): 3012-3024.
  YANG P, GUO Y Z, LI Y L. Dynamic mechanical test of aeronautic rivets[J]. Acta Aeronautica et Astronautica Sinica201435(11): 3012-3024 (in Chinese).
51 汪存显, 高豪迈, 龚煦, 等. 航空铆钉连接件的抗冲击性能[J]. 航空学报201940(1): 522484.
  WANG C X, GAO H M, GONG X, et al. Impact responses of aeronautic riveting structures[J]. Acta Aeronautica et Astronautica Sinica201940(1): 522484 (in Chinese).
52 WANG C X, SUO T, GAO H M, et al. Determination of constitutive parameters for predicting dynamic behavior and failure of riveted joint: Testing, modeling and validation[J]. International Journal of Impact Engineering2019132: 103319.
53 陈园方, 李玉龙, 刘军, 等. 典型前缘结构抗鸟撞性能改进研究[J]. 航空学报201031(9): 1781-1787.
  CHEN Y F, LI Y L, LIU J, et al. Study of bird strike on an improved leading edge structure[J]. Acta Aeronautica et Astronautica Sinica201031(9): 1781-1787 (in Chinese).
54 MCCARTHY M A, XIAO J R, PETRINIC N, et al. Modelling of bird strike on an aircraft wing leading edge made from fibre metal laminates-modeling of strike with SPH bird model?[J]. Applied Composite Materials200411(5): 317-340.
55 REGLERO J A, RODRíGUEZ-PéREZ M A, SOLóRZANO E, et al. Aluminium foams as a filler for leading edges: Improvements in the mechanical behaviour under bird strike impact tests[J]. Materials & Design201132(2): 907-910.
56 HANSSEN A G, GIRARD Y, OLOVSSON L, et al. A numerical model for bird strike of aluminium foam-based sandwich panels[J]. International Journal of Impact Engineering200632(7): 1127-1144.
57 AIROLDI A, TAGLIAPIETRA D. Bird impact simulation against a hybrid composite and metallic vertical stabilizer?[C]?∥19th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2001.
58 李玉龙, 刘军, 索涛, 等. 一种能够提高飞机抗鸟撞性能的尾翼: CN102390520A[P]. 2012-03-28.
  LI Y L, LIU J, SUO T, et al. A tail capable of improving anti-bird strike performance of aircraft: CN102390520A [P]. 2012-03-28 (in Chinese).
59 LIU J, LI Y L, YU X C, et al. A novel design for reinforcing the aircraft tail leading edge structure against bird strike?[J]. International Journal of Impact Engineering2017105: 89-101.
60 LI Y L, LIU J, SUO T, et al. Tail capable of improving anti-bird strike performance of aircraft: US8746619[P]. 2014-06-10.
61 LI Y L, LIU J, SUO T, et al. Tail capable of improving anti-bird strike performance of aircraft:France3J442180[P]. 2016-01-21
62 GABRYS J W, LAVERTY R, MEKA B B. Impact-energy tolerant method and structures: US9708030[P]. 2017-07-18.
63 KUHLMANN G, TEMMEN H, SCHR?DER R, et al. Leading edge structure for an aerodynamic surface of an aircraft: US11597497[P]. 2023-03-07.
64 VOEGE W. Air sucking vehicle tail section component or wing section component, method for producing an air sucking vehicle tail section component and a wing section component and a vehicle, especially an aircraft, with an air sucking vehicle tail section component or wing section component: US9193443[P]. 2015-11-24.
65 LECERF L, MOREAU V, MARANINCHI X, et al. Aircraft airfoil, and an aircraft provided with such an airfoil: US9187170[P]. 2015-11-17.
66 DAZET F. Device for protecting the front spar structure of a central casing of an aircraft wing and at least one piece of equipment located in said wing: US9573672[P]. 2017-02-21.
67 ZHENG L, KRAY N J, SUN C J. Anti-icing systems and airfoils for a fan section of a turbine engine: US11655828[P]. 2023-05-23.
68 ZHENG L, KRAY N J, SUN C J. Airfoils for a fan section of a turbine engine: US11988103[P]. 2024-05-21.
Outlines

/