ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Anti-bird impact design of aircraft structure via bulding block approach
Received date: 2024-11-12
Revised date: 2024-12-02
Accepted date: 2025-01-10
Online published: 2025-02-12
Supported by
National Natural Science Foundation of China(12025205)
In the field of aerospace engineering, aircraft inevitably encounter bird strikes during their service life, posing a direct threat to flight safety and potentially leading to catastrophic accidents involving the loss of aircraft and human lives. Due to the complexity of impact dynamics, bird strike resistance design for aircraft structures necessitates an integrated approach combining design analysis, numerical simulation, and experimental validation. However, the lack of dynamic performance and constitutive parameters for structural materials, as well as limitations in experimental methods and instrumentation, resulted in lengthy and inefficient impact resistance design. In recent years, the Impact dynamics research team at Northwestern Polytechnical University has conducted a series of innovative studies focusing on bird strike resistance design for aircraft structures, based on building block approach. This work addresses the determination of dynamic properties and constitutive parameters of structural materials and bird, the dynamic failure behavior of riveted joints, and the development of a novel anti-bird strike design concept and its application in the bird strike resistance design of a civil aircraft.
Tao SUO , Yulong LI . Anti-bird impact design of aircraft structure via bulding block approach[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(5) : 531524 -531524 . DOI: 10.7527/S1000-6893.2025.31524
1 | 中国民用航空局. 运输类飞机适航标准: CCAR-25-R3—2001 [S].北京: 中国民用航空局,2001. |
Civil Aviation Administration of China. Airworthiness standards for transport aircraft: CCAR-25-R3—2001 [S].Beijing: Civil Aviation Administration of China,2001 (in Chinese). | |
2 | Federal Aviation Administration. Airworthiness standards: Transport category airplanes: 14 CFR Parts 25 [S]. Washington, D.C.: FAA, 2013. |
3 | European Aviation Safety Agency. Compliance with CS-25 bird strike requirements: CM-S-001 Issue: 01 [R]. Cologne: EASA, 2012. |
4 | 李兴无. 航空发动机关键材料服役性能“积木式” 评价技术浅析[J]. 航空动力, 2020(4): 31-34. |
LI X W. Building block approach in the evaluation of in-service performance of key aero engine materials[J]. Aerospace Power, 2020(4): 31-34 (in Chinese). | |
5 | 林建鸿. 积木式方法与试验金字塔的历史沿革与发展趋势[J]. 航空工程进展, 2023, 14(5): 8-18. |
LIN J H. The historical developments and trendencies of building block approach and testing pyramid[J]. Advances in Aeronautical Science and Engineering, 2023, 14(5): 8-18 (in Chinese). | |
6 | JOHNSON G R, COOK W. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983, 21: 541-548. |
7 | COWPER G, SYMONDS P. Strain-hardening and strain-rate effects in the impact loading of cantilever beams[R]. Brown University Division of Applied Mathematics, 1957. |
8 | ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations?[J]. Journal of Applied Physics, 1987, 61(5): 1816-1825. |
9 | XUE L, WIERZBICKI T. Numerical simulation of fracture mode transition in ductile plates[J]. International Journal of Solids and Structures, 2009, 46(6): 1423-1435. |
10 | BAI Y L, WIERZBICKI T. Forming severity concept for predicting sheet necking under complex loading histories[J]. International Journal of Mechanical Sciences, 2008, 50(6): 1012-1022. |
11 | HANCOCK J W, MACKENZIE A C. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states[J]. Journal of the Mechanics and Physics of Solids, 1976, 24(2-3): 147-160. |
12 | BAO Y B, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences, 2004, 46(1): 81-98. |
13 | TVERGAARD V, NEEDLEMAN A. Effect of material rate sensitivity on failure modes in the Charpy V-Notch test[J]. Journal of the Mechanics and Physics of Solids, 1986, 34(3): 213-241. |
14 | RICE J R, TRACEY D M. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3): 201-217. |
15 | BAI Y L, WIERZBICKI T. A new model of metal plasticity and fracture with pressure and Lode dependence[J]. International Journal of Plasticity, 2008, 24(6): 1071-1096. |
16 | LOU Y S, YOON J W, HUH H. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality?[J]. International Journal of Plasticity, 2014, 54: 56-80. |
17 | BAI Y L, WIERZBICKI T. Application of extended Mohr-Coulomb criterion to ductile fracture[J]. International Journal of Fracture, 2010, 161(1): 1-20. |
18 | JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48. |
19 | ZHANG C, SUO T, TAN W L, et al. An experimental method for determination of dynamic mechanical behavior of materials at high temperatures[J]. International Journal of Impact Engineering, 2017, 102: 27-35. |
20 | DOU Q B, WU K R, SUO T, et al. Experimental methods for determination of mechanical behaviors of materials at high temperatures via the split Hopkinson bars[J]. Acta Mechanica Sinica, 2020, 36(6): 1275-1293. |
21 | WANG C X, SUO T, LI Y L, et al. High-velocity impact responses of 2618 aluminum plates for engine containment systems under combined actions of projectile form and oblique angle[J]. Chinese Journal of Aeronautics, 2019, 32(6): 1428-1441. |
22 | HILL R. A self-consistent mechanics of composite materials[J]. Journal of the Mechanics and Physics of Solids, 1965, 13(4): 213-222. |
23 | TSAI S W, WU E M. A general theory of strength for anisotropic materials?[J]. Journal of Composite Materials, 1971, 5(1): 58-80. |
24 | 沈观林, 胡更开. 复合材料力学[M]. 北京: 清华大学出版社, 2006: 50-66. |
SHEN G L, HU G K. Mechanics of composite materials[M]. Beijing: Tsinghua University Press, 2006:50-66 (in Chinese). | |
25 | PUCK A, SCHüRMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models?[J]. Composites Science and Technology, 2002, 62(12-13): 1633-1662. |
26 | DAVILA C G, CAMANHO P P, ROSE C A. Failure criteria for FRP laminates[J]. Journal of Composite Materials, 2005, 39(4): 323-345. |
27 | PINHO S, DáVILA C, CAMANHO P, et al. Failure models and criteria for frp under in-plane or three-dimensional stress states including shear non-linearity:NASA-213530[R]. Washington, D.C.: NASA, 2005. |
28 | PINHO S T, DARVIZEH R, ROBINSON P, et al. Material and structural response of polymer-matrix fibre-reinforced composites[J]. Journal of Composite Materials, 2012, 46(19-20): 2313-2341. |
29 | CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations?[J]. Journal of Composite Materials, 1987, 21(9): 834-855. |
30 | HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. |
31 | HOU J P, PETRINIC N, RUIZ C, et al. Prediction of impact damage in composite plates[J]. Composites Science and Technology, 2000, 60(2): 273-281. |
32 | CHOI H Y, CHANG F K. A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact[J]. Journal of Composite Materials, 1992, 26(14): 2134-2169. |
33 | LADEVEZE P, LEDANTEC E. Damage modelling of the elementary ply for laminated composites[J]. Composites Science and Technology, 1992, 43(3): 257-267. |
34 | WANG C X, SUO T, HANG C, et al. Influence of in-plane tensile preloads on impact responses of composite laminated plates[J]. International Journal of Mechanical Sciences, 2019, 161: 105012. |
35 | WILBECK J S, BARBER J P. Bird impacting loading[J]. The Shock and Vibration Bulletin, 1978, 48: 115-122. |
36 | BARBER J P, BOEHMAN L I, WILBECK J S. The modeling of bird impact loads: AD-A065049 [R].1978. |
37 | 尹晶, 范尔宁. 鸟撞击载荷的冲量与时间因素的确定[J]. 南京航空航天大学学报, 1994, 26(1): 68-74. |
YIN J, FAN E N. The determination of impulse and temporal factor of bird impact loads[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1994, 26(1): 68-74 (in Chinese). | |
38 | 张志林, 姚卫星. 飞机风挡鸟撞动响应分析方法研究[J]. 航空学报, 2004, 25(6): 577-580. |
ZHANG Z L, YAO W X. Research on dynamic analysis of bird impact on aircraft windshield?[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(6): 577-580 (in Chinese). | |
39 | 王富生, 李立州, 王新军, 等. 鸟体材料参数的一种反演方法[J]. 航空学报, 2007, 28(2): 344-347. |
WANG F S, LI L Z, WANG X J, et al. A method to identify bird’s material parameters[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2): 344-347 (in Chinese). | |
40 | 刘军, 李玉龙, 郭伟国, 等. 鸟体本构模型参数反演Ⅰ: 鸟撞平板试验研究[J]. 航空学报, 2011, 32(5): 802-811. |
LIU J, LI Y L, GUO W G, et al. Parameters inversion on bird constitutive model part Ⅰ: Study on experiment of bird striking on plate[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 802-811 (in Chinese). | |
41 | 刘军, 李玉龙, 石霄鹏, 等. 鸟体本构模型参数反演Ⅱ: 模型参数反演研究[J]. 航空学报, 2011, 32(5): 812-821. |
LIU J, LI Y L, SHI X P, et al. Parameters inversion on bird constitutive model part Ⅱ?: Study on model parameters inversion[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 812-821 (in Chinese). | |
42 | KULAK G, FISHER J, STRUIK J H A. Guide to design criteria for bolted and riveted joints[M]. 2nd ed. New York: Wiley, 1987: 20-33. |
43 | PORCARO R, HANSSEN A G, AALBERG A, et al. Joining of aluminium using self-piercing riveting: Testing, modelling and analysis[J]. International Journal of Crashworthiness, 2004, 9(2): 141-154. |
44 | PORCARO R, HANSSEN A G, LANGSETH M, et al. The behaviour of a self-piercing riveted connection under quasi-static loading conditions[J]. International Journal of Solids and Structures, 2006, 43(17): 5110-5131. |
45 | PORCARO R, HANSSEN A G, LANGSETH M, et al. An experimental investigation on the behaviour of self-piercing riveted connections in aluminium alloy AA6060[J]. International Journal of Crashworthiness, 2006, 11(5): 397-417. |
46 | BIER M, SOMMER S. Advanced investigations on a simplified modeling method of self-piercing riveted joints for crash simulation?[C]?∥Presentation held at 11. LS-DYNA Forum. 2012. |
47 | WOOD P K C, SCHLEY C A, WILLIAMS M A, et al. A model to describe the high rate performance of self-piercing riveted joints in sheet aluminium[J]. Materials & Design, 2011, 32(4): 2246-2259. |
48 | LIU X C, GUO J, BAI C Y, et al. Drop test and crash simulation of a civil airplane fuselage section[J]. Chinese Journal of Aeronautics, 2015, 28(2): 447-456. |
49 | PORCARO R, LANGSETH M, HANSSEN A G, et al. Crashworthiness of self-piercing riveted connections[J]. International Journal of Impact Engineering, 2008, 35(11): 1251-1266. |
50 | 杨沛, 郭亚洲, 李玉龙. 航空铆钉的动态力学性能测试[J]. 航空学报, 2014, 35(11): 3012-3024. |
YANG P, GUO Y Z, LI Y L. Dynamic mechanical test of aeronautic rivets[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 3012-3024 (in Chinese). | |
51 | 汪存显, 高豪迈, 龚煦, 等. 航空铆钉连接件的抗冲击性能[J]. 航空学报, 2019, 40(1): 522484. |
WANG C X, GAO H M, GONG X, et al. Impact responses of aeronautic riveting structures[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522484 (in Chinese). | |
52 | WANG C X, SUO T, GAO H M, et al. Determination of constitutive parameters for predicting dynamic behavior and failure of riveted joint: Testing, modeling and validation[J]. International Journal of Impact Engineering, 2019, 132: 103319. |
53 | 陈园方, 李玉龙, 刘军, 等. 典型前缘结构抗鸟撞性能改进研究[J]. 航空学报, 2010, 31(9): 1781-1787. |
CHEN Y F, LI Y L, LIU J, et al. Study of bird strike on an improved leading edge structure[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9): 1781-1787 (in Chinese). | |
54 | MCCARTHY M A, XIAO J R, PETRINIC N, et al. Modelling of bird strike on an aircraft wing leading edge made from fibre metal laminates-modeling of strike with SPH bird model?[J]. Applied Composite Materials, 2004, 11(5): 317-340. |
55 | REGLERO J A, RODRíGUEZ-PéREZ M A, SOLóRZANO E, et al. Aluminium foams as a filler for leading edges: Improvements in the mechanical behaviour under bird strike impact tests[J]. Materials & Design, 2011, 32(2): 907-910. |
56 | HANSSEN A G, GIRARD Y, OLOVSSON L, et al. A numerical model for bird strike of aluminium foam-based sandwich panels[J]. International Journal of Impact Engineering, 2006, 32(7): 1127-1144. |
57 | AIROLDI A, TAGLIAPIETRA D. Bird impact simulation against a hybrid composite and metallic vertical stabilizer?[C]?∥19th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2001. |
58 | 李玉龙, 刘军, 索涛, 等. 一种能够提高飞机抗鸟撞性能的尾翼: CN102390520A[P]. 2012-03-28. |
LI Y L, LIU J, SUO T, et al. A tail capable of improving anti-bird strike performance of aircraft: CN102390520A [P]. 2012-03-28 (in Chinese). | |
59 | LIU J, LI Y L, YU X C, et al. A novel design for reinforcing the aircraft tail leading edge structure against bird strike?[J]. International Journal of Impact Engineering, 2017, 105: 89-101. |
60 | LI Y L, LIU J, SUO T, et al. Tail capable of improving anti-bird strike performance of aircraft: US8746619[P]. 2014-06-10. |
61 | LI Y L, LIU J, SUO T, et al. Tail capable of improving anti-bird strike performance of aircraft:France3J442180[P]. 2016-01-21 |
62 | GABRYS J W, LAVERTY R, MEKA B B. Impact-energy tolerant method and structures: US9708030[P]. 2017-07-18. |
63 | KUHLMANN G, TEMMEN H, SCHR?DER R, et al. Leading edge structure for an aerodynamic surface of an aircraft: US11597497[P]. 2023-03-07. |
64 | VOEGE W. Air sucking vehicle tail section component or wing section component, method for producing an air sucking vehicle tail section component and a wing section component and a vehicle, especially an aircraft, with an air sucking vehicle tail section component or wing section component: US9193443[P]. 2015-11-24. |
65 | LECERF L, MOREAU V, MARANINCHI X, et al. Aircraft airfoil, and an aircraft provided with such an airfoil: US9187170[P]. 2015-11-17. |
66 | DAZET F. Device for protecting the front spar structure of a central casing of an aircraft wing and at least one piece of equipment located in said wing: US9573672[P]. 2017-02-21. |
67 | ZHENG L, KRAY N J, SUN C J. Anti-icing systems and airfoils for a fan section of a turbine engine: US11655828[P]. 2023-05-23. |
68 | ZHENG L, KRAY N J, SUN C J. Airfoils for a fan section of a turbine engine: US11988103[P]. 2024-05-21. |
/
〈 |
|
〉 |