ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Development and prospects of multisource information fusion
Received date: 2024-12-17
Revised date: 2024-12-30
Accepted date: 2025-02-10
Online published: 2025-02-10
Supported by
National Natural Science Foundation of China(62388102)
Multisource information fusion has undergone decades of development, expanding from classic signal processing issues to a multidisciplinary frontier field and covering a wide range of applications such as aerospace, intelligent transportation, industrial engineering, and security. This paper starts from the definition and principles of multisource information fusion, reviews the main development stages of information fusion technology, and summarizes the research progress of four basic scientific issues: fusion detection, fusion recognition, fusion estimation, and fusion association. The technology of multisource image fusion and machine learning methods oriented towards information fusion are also outlined. Based on this, the typical applications of information fusion in several fields are introduced. Finally, the development direction of information fusion technology and its applications are discussed.
You HE , Yu LIU , Yaowen LI , Ziran DING , Kai DONG , Yaqi CUI , Caisheng ZHANG , Xueqian WANG , Zhi LI , Chen GUO . Development and prospects of multisource information fusion[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(6) : 531672 -531672 . DOI: 10.7527/S1000-6893.2025.31672
1 | GAO H B, CHENG B, WANG J Q, et al. Object classification using CNN-based fusion of vision and LIDAR in autonomous vehicle environment[J]. IEEE Transactions on Industrial Informatics, 2018, 14(9): 4224-4231. |
2 | YEONG D J, VELASCO-HERNANDEZ G, BARRY J, et al. Sensor and sensor fusion technology in autonomous vehicles: A review[J]. Sensors, 2021, 21(6): 2140. |
3 | WANG Q R, TIAN X Y, LI D C. Multimodal soft jumping robot with self-decision ability[J]. Smart Materials and Structures, 2021, 30(8): 085038. |
4 | HRAMOV A E, MAKSIMENKO V A, PISARCHIK A N. Physical principles of brain-computer interfaces and their applications for rehabilitation, robotics and control of human brain states[J]. Physics Reports, 2021, 918: 1-133. |
5 | NASEER N, HONG K S. fNIRS-based brain-computer interfaces: A review[J]. Frontiers in Human Neuroscience, 2015, 9: 3. |
6 | ABIRI R, BORHANI S, SELLERS E W, et al. A comprehensive review of EEG-based brain-computer interface paradigms[J]. Journal of Neural Engineering, 2019, 16(1): 011001. |
7 | 朱军. 会思考的硬核“椰城”: 城市大脑塑造未来科幻城市[J]. 互联网经济, 2020(S2): 68-71. |
ZHU J. Thinking hard-core “coconut city”: The urban brain shapes the future science fiction city[J]. Digital Economy, 2020(S2): 68-71 (in Chinese). | |
8 | 周光霞. 美军联合信息环境建设情况分析及启示[J]. 指挥与控制学报, 2016, 2(4): 354-360. |
ZHOU G X. On JIE and its enlightenment to developments of networking information-centric system of systems[J]. Journal of Command and Control, 2016, 2(4): 354-360 (in Chinese). | |
9 | OpenAI. Video generation models as world simulators [EB/OL]. (2024-02-16) . |
10 | 何友, 王国宏, 陆大?, 等. 多传感器信息融合及应用[M]. 北京: 电子工业出版社, 2000. |
HE Y, WANG G H, LU D J, et al. Multisensor information fusion with applications?[M]. Beijing: Publishing House of Electronics Industry, 2000 (in Chinese). | |
11 | CIUONZO D, ROSSI P S, VARSHNEY P K. Distributed detection in wireless sensor networks under multiplicative fading via generalized score tests[J]. IEEE Internet of Things Journal, 2021, 8(11): 9059-9071. |
12 | LI C X, LI G, VARSHNEY P K. Distributed detection of sparse signals with censoring sensors in clustered sensor networks[J]. Information Fusion, 2022, 83: 1-18. |
13 | WANG X Q, LI G, QUAN C, et al. Distributed detection of sparse stochastic signals with quantized measurements: The generalized Gaussian case[J]. IEEE Transactions on Signal Processing, 2019, 67(18): 4886-4898. |
14 | VARSHNEY P K. Distributed detection and data fusion[M]. New York: Springer, 1997. |
15 | ABRARDO A, BARNI M, KALLAS K, et al. Information fusion in distributed sensor networks with Byzantines[M]. Singapore: Springer, 2021. |
16 | KAYAALP M, BORDIGNON V, SAYED A H. Social opinion formation and decision making under communication trends[J]. IEEE Transactions on Signal Processing, 2024, 72: 506-520. |
17 | VLASKI S, KAR S, SAYED A H, et al. Networked signal and information processing: Learning by multiagent systems[J]. IEEE Signal Processing Magazine, 2023, 40(5): 92-105. |
18 | QUAN C, SRIRANGA N, YANG H D, et al. Efficient ordered-transmission based distributed detection under data falsification attacks[J]. IEEE Signal Processing Letters, 2023, 30: 145-149. |
19 | TORRA V, NARUKAWA Y. Modeling decisions: Information fusion and aggregation operators[M]. Berlin: Springer, 2007. |
20 | HALL D, CHONG C Y, LLINAS J, et al. Distributed data fusion for network-centric operations[M]. Boca Raton: CRC Press, 2013. |
21 | YEOM S W, KIRUBARAJAN T, BAR-SHALOM Y. Track segment association, fine-step IMM and initialization with Doppler for improved track performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(1): 293-309. |
22 | 杜渐, 夏学知. 面向航迹中断的模糊航迹关联算法[J]. 火力与指挥控制, 2013, 38(6): 68-71, 76. |
DU J, XIA X Z. A fuzzy track association algorithm in track interrupt-oriented[J]. Fire Control & Command Control, 2013, 38(6): 68-71, 76 (in Chinese). | |
23 | 何友, 彭应宁, 陆大?, 等. 分布式多传感器数据融合中的双门限航迹相关算法[J]. 电子科学学刊, 1997, 19(6): 721-728. |
HE Y, PENG Y N, LU D J, et al. Binary track correlation algorithms in a distributed multisensor data fusion system[J]. Journal of Electronics & Information Technology, 1997, 19(6): 721-728 (in Chinese). | |
24 | 何友, 陆大?, 彭应宁, 等. 基于模糊综合函数的航迹关联算法[J]. 电子科学学刊, 1999, 21(1): 91-96. |
HE Y, LU D J, PENG Y N, et al. Track correlation algorithms based on fuzzy synthetic function[J]. Journal of Electronics & Information Technology, 1999, 21(1): 91-96 (in Chinese). | |
25 | 徐毓, 金以慧. 基于多尺度小波变换和短时分形理论的航迹关联方法[J]. 控制与决策, 2003, 18(4): 432-435, 440. |
XU Y, JIN Y H. Target tracks association based on multi-resolution wavelet transform and short-time fractal[J]. Control and Decision, 2003, 18(4): 432-435, 440 (in Chinese). | |
26 | TIAN W, WANG Y, SHAN X M, et al. Track-to-track association for biased data based on the reference topology feature[J]. IEEE Signal Processing Letters, 2014, 21(4): 449-453. |
27 | 何友, 宋强, 熊伟. 基于相位相关的航迹对准关联技术[J]. 电子学报, 2010, 38(12): 2718-2723. |
HE Y, SONG Q, XIONG W. Track alignment-correlation technique based on phase correlation[J]. Acta Electronica Sinica, 2010, 38(12): 2718-2723 (in Chinese). | |
28 | XIONG W, XU P L, CUI Y Q, et al. Track segment association with dual contrast neural network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 247-261. |
29 | XIONG W, XU P L, CUI Y Q. HTG-TA: Heterogenous track graph for asynchronous track-to-track association[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(5): 7232-7250. |
30 | JIN B, TANG Y F, ZHANG Z K, et al. Radar and AIS track association integrated track and scene features through deep learning[J]. IEEE Sensors Journal, 2023, 23(7): 8001-8009. |
31 | APTOULA E. Remote sensing image retrieval with global morphological texture descriptors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 3023-3034. |
32 | XIE J, FANG Y, ZHU F, et al. Deepshape: Deep learned shape descriptor for 3D shape matching and retrieval[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2015: 1275-1283. |
33 | LI P, REN P, ZHANG X Y, et al. Region-wise deep feature representation for remote sensing images[J]. Remote Sensing, 2018, 10(6): 871. |
34 | XIONG W, XIONG Z Y, CUI Y Q, et al. A discriminative distillation network for cross-source remote sensing image retrieval[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1234-1247. |
35 | CHEN H, DING G G, LIU X D, et al. IMRAM: Iterative matching with recurrent attention memory for cross-modal image-text retrieval[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 12652-12660. |
36 | CHI P D, FENG Y, ZHOU M L, et al. TIAR: Text-Image-audio retrieval with weighted multimodal re-ranking[J]. Applied Intelligence, 2023, 53(19): 22898-22916. |
37 | ARAUJO A, GIROD B. Large-scale video retrieval using image queries[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(6): 1406-1420. |
38 | HOTELLING H. Relations between two sets of variates[M]∥Breakthroughs in Statistics. New York: Springer, 1992: 162-190. |
39 | LV Y F, XIONG W, ZHANG X H, et al. Fusion-based correlation learning model for cross-modal remote sensing image retrieval[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 6503205. |
40 | 李浩然, 熊伟, 崔亚奇, 等. 相似度矩阵辅助遥感图像无监督哈希跨模态关联[J]. 光子学报, 2023, 52(1): 216-227. |
LI H R, XIONG W, CUI Y Q, et al. Enhancing remote sensing image unsupervised hashing cross-modal correlation with similarity matrix?[J]. Acta Photonica Sinica, 2023, 52(1): 216-227 (in Chinese). | |
41 | QIN Z, ZHAO P B, ZHUANG T M, et al. A survey of identity recognition via data fusion and feature learning[J]. Information Fusion, 2023, 91: 694-712. |
42 | 徐从富, 耿卫东, 潘云鹤. 面向数据融合的DS方法综述[J]. 电子学报, 2001, 29(3): 393-396. |
XU C F, GENG W D, PAN Y H. Review of dempster shafer method for data fusion[J]. Acta Electronica Sinica, 2001, 29(3): 393-396 (in Chinese). | |
43 | ZHAO J, DENG Y. Complex network modeling of evidence theory[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(11): 3470-3480. |
44 | LIU HZ, YANG WQ. Bayesian method and its application to multiple level decision fusion with distributed sensors[J]. Transactions of Beijing Institute of Technology, 1998, 5: 536-540. |
45 | CHEN, S M, CHANG, Y C. Fuzzy decision making based on similarity measures and OWA operators?[J]. Fuzzy Sets and Systems, 2008, 159(12): 1437-1454. |
46 | LI H, WU X J, DURRANI T S. Infrared and visible image fusion with ResNet and zero-phase component analysis?[J]. Infrared Physics & Technology, 2019, 102: 103039. |
47 | WANG H M, AN W B, LI L, et al. Infrared and visible image fusion based on multi-channel convolutional neural network[J]. IET Image Processing, 2022, 16(6): 1575-1584. |
48 | HOU R C, ZHOU D M, NIE R C, et al. VIF-net: An unsupervised framework for infrared and visible image fusion[J]. IEEE Transactions on Computational Imaging, 2020, 6: 640-651. |
49 | MA J Y, YU W, LIANG P W, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. |
50 | RAO D Y, XU T Y, WU X J. TGFuse: An infrared and visible image fusion approach based on transformer and generative adversarial network[J]. IEEE Transactions on Image Processing, 2023, 1-12. |
51 | GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks?[DB/OL]. arXiv preprint: 1505. 07818, 2016. |
52 | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2242-2251. |
53 | HONG D F, YOKOYA N, XIA G S, et al. X-ModalNet: A semi-supervised deep cross-modal network for classification of remote sensing data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167: 12-23. |
54 | FENG Z X, SONG L L, YANG S Y, et al. Cross-modal contrastive learning for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5517713. |
55 | HOFFMANN D S, CLASEN K N, DEMIR B. Transformer-based multi-modal learning for multi-label remote sensing image classification[C]∥IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2023: 4891-4894. |
56 | BAHADURI B, MING Z H, FENG F C, et al. Multimodal transformer using cross-channel attention for object detection in remote sensing images[C]∥2024 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2024: 2620-2626. |
57 | ZHANG F, BI X Y, ZHANG Z X, et al. HIFR-net: A HRRP-infrared fusion recognition network capable of handling modality missing and multisource data misalignment[J]. IEEE Sensors Journal, 2025, 25(3): 5769-5781. |
58 | 韩崇昭, 朱洪艳, 段战胜. 多源信息融合[M]. 第3版. 北京: 清华大学出版社, 2022. |
HAN C Z, ZHU H Y, DUAN Z S. Multisource information fusion?[M]. 3rd ed. Beijing: Tsinghua University Press, 2022 (in Chinese). | |
59 | ZHU Y M, YOU Z S, ZHAO J, et al. The optimality for the distributed Kalman filtering fusion with feedback[J]. Automatica, 2001, 37(9): 1489-1493. |
60 | JULIER S J, UHLMANN J K. A non-divergent estimation algorithm in the presence of unknown correlations[C]∥Proceedings of the 1997 American Control Conference. Piscataway: IEEE Press, 1997: 2369-2373. |
61 | FARRELL W J, GANESH C. Generalized chernoff fusion approximation for practical distributed data fusion[C]∥2009 12th International Conference on Information Fusion. Piscataway: IEEE Press, 2009: 555-562. |
62 | REINHARDT M, NOACK B, ARAMBEL P O, et al. Minimum covariance bounds for the fusion under unknown correlations[J]. IEEE Signal Processing Letters, 2015, 22(9): 1210-1214. |
63 | SIJS J, LAZAR M. State fusion with unknown correlation: Ellipsoidal intersection[J]. Automatica, 2012, 48(8): 1874-1878. |
64 | NOACK B, SIJS J, REINHARDT M, et al. Decentralized data fusion with inverse covariance intersection[J]. Automatica, 2017, 79: 35-41. |
65 | REECE S, ROBERTS S. Generalised covariance union: A unified approach to hypothesis merging in tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 207-221. |
66 | SHAFIEEZADEH-ABADEH S, NGUYEN V A, KUHN D, et al. Wasserstein distributionally robust Kalman filtering[C]∥Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York: ACM, 2018: 8483-8492. |
67 | WANG S X, WU Z M, LIM A. Robust state estimation for linear systems under distributional uncertainty?[J]. IEEE Transactions on Signal Processing, 2021, 69: 5963-5978. |
68 | ZORZI M. Distributed Kalman filtering under model uncertainty[J]. IEEE Transactions on Control of Network Systems, 2020, 7(2): 990-1001. |
69 | YU X K, LI J X. Distributed robust Kalman filters under model uncertainty and multiplicative disturbance?[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 973-988. |
70 | NIU D B, SONG E B, LI Z, et al. A marginal distributionally robust MMSE estimation for a multisensor system with Kullback-Leibler divergence constraints?[J]. IEEE Transactions on Signal Processing, 2023, 71: 3772-3787. |
71 | HAGE J AL, NAJJAR M E EL, POMORSKI D. Multi-sensor fusion approach with fault detection and exclusion based on the Kullback-Leibler divergence: Application on collaborative multi-robot system[J]. Information Fusion, 2017, 37: 61-76. |
72 | BAR-SHALOM Y. Update with out-of-sequence measurements in tracking: Exact solution[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(3): 769-777. |
73 | BAR-SHALOM Y, CHEN H M, MALLICK M. One-step solution for the multistep out-of-sequence-measurement problem in tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(1): 27-37. |
74 | GOVAERS F, KOCH W. Generalized solution to smoothing and out-of-sequence processing?[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3): 1739-1748. |
75 | KIM Y, HONG K, BANG H. Utilizing out-of-sequence measurement for ambiguous update in particle filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 493-501. |
76 | ZHANG S, BAR-SHALOM Y. Optimal update with multiple out-of-sequence measurements with arbitrary arriving order[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3116-3132. |
77 | GARCíA-FERNáNDEZ á F, YI W. Continuous-discrete multiple target tracking with out-of-sequence measurements[J]. IEEE Transactions on Signal Processing, 2021, 69: 4699-4709. |
78 | MARELLI D, SUI T J, FU M Y. Distributed Kalman estimation with decoupled local filters?[J]. Automatica, 2021, 130: 109724. |
79 | BATTISTELLI G, CHISCI L. Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability?[J]. Automatica, 2014, 50(3): 707-718. |
80 | BATTISTELLI G, CHISCI L, MUGNAI G, et al. Consensus-based linear and nonlinear filtering[J]. IEEE Transactions on Automatic Control, 2015, 60(5): 1410-1415. |
81 | 金浩. 多传感器网络化系统的分布式估计算法研究[D]. 哈尔滨: 黑龙江大学, 2022. |
JIN H. Research on distributed estimation algorithm of multi-sensor networked system[D]. Harbin: Helongjiang University, 2022 (in Chinese). | |
82 | LI Y Z, QUEVEDO D E, LAU V, et al. Optimal periodic transmission power schedules for remote estimation of ARMA processes[J]. IEEE Transactions on Signal Processing, 2013, 61(24): 6164-6174. |
83 | DEKKERS G, ROSAS F, VAN WATERSCHOOT T, et al. Dynamic sensor activation and decision-level fusion in wireless acoustic sensor networks for classification of domestic activities[J]. Information Fusion, 2022, 77: 196-210. |
84 | ZHOU J M, GU G X, CHEN X. Distributed Kalman filtering over wireless sensor networks in the presence of data packet drops[J]. IEEE Transactions on Automatic Control, 2019, 64(4): 1603-1610. |
85 | YANG H J, LI H, XIA Y Q, et al. Distributed Kalman filtering over sensor networks with transmission delays[J]. IEEE Transactions on Cybernetics, 2021, 51(11): 5511-5521. |
86 | LIU H, NIU B, LI Y Z. False-data-injection attacks on remote distributed consensus estimation[J]. IEEE Transactions on Cybernetics, 2022, 52(1): 433-443. |
87 | YANG W, ZHANG Y, CHEN G R, et al. Distributed filtering under false data injection attacks?[J]. Automatica, 2019, 102: 34-44. |
88 | LI L, YANG H, XIA Y Q, et al. Event-based distributed state estimation for linear systems under unknown input and false data injection attack[J]. Signal Processing, 2020, 170: 107423. |
89 | LYNEN S, ACHTELIK M W, WEISS S, et al. A robust and modular multi-sensor fusion approach applied to MAV navigation[C]?∥2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2013: 3923-3929. |
90 | TANG X L, ZHANG Z Q, QIN Y C. On-road object detection and tracking based on radar and vision fusion: A review[J]. IEEE Intelligent Transportation Systems Magazine, 2022, 14(5): 103-128. |
91 | MAHFOUZ S, MOURAD-CHEHADE F, HONEINE P, et al. Target tracking using machine learning and Kalman filter in wireless sensor networks[J]. IEEE Sensors Journal, 2014, 14(10): 3715-3725. |
92 | ZHANG Y, SONG B, DU X J, et al. Vehicle tracking using surveillance with multimodal data fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(7): 2353-2361. |
93 | CAO J W, ZHANG H Y, JIN L S, et al. A review of object tracking methods: From general field to autonomous vehicles[J]. Neurocomputing, 2024, 585: 127635. |
94 | FAN L W, ZHANG F, FAN H, et al. Brief review of image denoising techniques[J]. Visual Computing for Industry, Biomedicine, and Art, 2019, 2(1): 7. |
95 | HASKINS G, KRUGER U, YAN P K. Deep learning in medical image registration: A survey[J]. Machine Vision and Applications, 2020, 31(1): 8. |
96 | LI G. Advanced Sparsity-Driven Models and Methods for Radar Applications[M]. Stevenage: SciTech Publishing Inc., 2020. |
97 | LI S, KANG X, FANG L, et al. Pixel-level image fusion: A survey of the state of the art[J]. Information Fusion, 2017, 33: 100-112. |
98 | WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227. |
99 | GKILLAS A, AMPELIOTIS D, BERBERIDIS K. Connections between deep equilibrium and sparse representation models with application to hyperspectral image denoising[J]. IEEE Transactions on Image Processing, 2023, 32: 1513-1528. |
100 | AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. |
101 | SCETBON M, ELAD M, MILANFAR P. Deep K-SVD denoising[J]. IEEE Transactions on Image Processing, 2021, 30: 5944-5955. |
102 | ZHANG H, XU H, TIAN X, et al. Image fusion meets deep learning: A survey and perspective. Information Fusion, 2021, 76: 323-336. |
103 | LI H, WU X J. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614-2623. |
104 | ZHAO F, ZHAO W D, YAO L B, et al. Self-supervised feature adaption for infrared and visible image fusion[J]. Information Fusion, 2021, 76: 189-203. |
105 | LIU J Y, WU Y H, HUANG Z B, et al. SMoA: Searching a modality-oriented architecture for infrared and visible image fusion[J]. IEEE Signal Processing Letters, 2021, 28: 1818-1822. |
106 | XU H, WANG X Y, MA J Y. DRF: Disentangled representation for visible and infrared image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5006713. |
107 | TANG L F, YUAN J T, MA J Y. Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network[J]. Information Fusion, 2022, 82: 28-42. |
108 | LI J, HUO H T, LIU K J, et al. Infrared and visible image fusion using dual discriminators generative adversarial networks with Wasserstein distance[J]. Information Sciences, 2020, 529: 28-41. |
109 | GU Y S, WANG X Y, ZHANG C, et al. Advanced driving assistance based on the fusion of infrared and visible images[J]. Entropy, 2021, 23(2): 239. |
110 | WANG X Q, ZHU D, LI G, et al. Proposal-copula-based fusion of spaceborne and airborne SAR images for ship target detection[J]. Information Fusion, 2022, 77: 247-260. |
111 | LI W M, WANG X Q, LI G, et al. NN-copula-CD: A copula-guided interpretable neural network for change detection in heterogeneous remote sensing images[DB/OL]. arXiv preprint: 2303.17448, 2023. |
112 | FANG Q Y, WANG Z K. Cross-modality attentive feature fusion for object detection in multispectral remote sensing imagery[J]. Pattern Recognition, 2022, 130: 108786. |
113 | WANG Q W, CHI Y K, SHEN T, et al. Improving RGB-infrared object detection by reducing cross-modality redundancy[J]. Remote Sensing, 2022, 14(9): 2020. |
114 | JIANG X, LI G, LIU Y, et al. Change detection in heterogeneous optical and SAR remote sensing images via deep homogeneous feature fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1551-1566. |
115 | MATASCI G, PLANTE J, KASA K, et al. Deep learning for vessel detection and identification from spaceborne optical imagery[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2021, V-3-2021: 303-310. |
116 | ZHANG L P, LIU Y, WANG X Q, et al. GLRT-based metric learning for remote sensing object retrieval[DB/OL]. arXiv preprint: 2410.05773, 2024. |
117 | XIAO G, BAVIRISETTI D P, LIU G, et al. Image fusion[M]. Singapore: Springer, 2020. |
118 | LIU C X, YANG H, FU J L, et al. Learning trajectory-aware transformer for video super-resolution[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 5677-5686. |
119 | IRVIN J A, LIU E R, CHEN J C, et al. TEOChat: A large vision-language assistant for temporal earth observation data[DB/OL]. arXiv preprint: 2410.06234, 2024. |
120 | GAONKAR A, CHUKKAPALLI Y, RAMAN P J, et al. A comprehensive survey on multimodal data representation and information fusion algorithms[C]∥2021 International Conference on Intelligent Technologies (CONIT). Piscataway: IEEE Press, 2021: 1-8. |
121 | KLUPACS J, GOSTAR A K, RATHNAYAKE T, et al. Multiagent information fusion for connected driving: A review[J]. IEEE Access, 2022, 10: 85030-85049. |
122 | LIN S Z, HAN Z, LI D W, et al. Integrating model- and data-driven methods for synchronous adaptive multi-band image fusion[J]. Information Fusion, 2020, 54: 145-160. |
123 | WEN J T, JIANG D Z, TU G, et al. Dynamic interactive multiview memory network for emotion recognition in conversation[J]. Information Fusion, 2023, 91(C): 123-133. |
124 | XU J, REN Y Z, SHI X S, et al. UNTIE: Clustering analysis with disentanglement in multi-view information fusion[J]. Information Fusion, 2023, 100: 101937. |
125 | NIE F P, LI Z H, WANG R, et al. An effective and efficient algorithm for K-means clustering with new formulation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 3433-3443. |
126 | LIU T, ZHOU Z, YANG L J. Layered isolation forest: A multi-level subspace algorithm for improving isolation forest[J]. Neurocomputing, 2024, 581: 127525. |
127 | DU J X, HAN G J, LIN C, et al. ITrust: An anomaly-resilient trust model based on isolation forest for underwater acoustic sensor networks[J]. IEEE Transactions on Mobile Computing, 2022, 21(5): 1684-1696. |
128 | ZHANG P, HE F Z, ZHANG H, et al. Real-time malicious traffic detection with online isolation forest over SD-WAN[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2076-2090. |
129 | YANG C, LIU T T, CHEN G H, et al. ICSFF: Information constraint on self-supervised feature fusion for few-shot remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5800312. |
130 | ZHANG Y X, LI W, ZHANG M M, et al. Graph information aggregation cross-domain few-shot learning for hyperspectral image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(2): 1912-1925. |
131 | WU L K, LI Z, ZHAO H K, et al. Recognizing unseen objects via multimodal intensive knowledge graph propagation[C]∥Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 2618-2628. |
132 | JIANG X, LI G, ZHANG X P, et al. A semisupervised Siamese network for efficient change detection in heterogeneous remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 4700718. |
133 | CHUN D, LEE S, KIM H. USD: Uncertainty-based one-phase learning to enhance pseudo-label reliability for semi-supervised object detection[J]. IEEE Transactions on Multimedia, 2024, 26: 6336-6347. |
134 | ZHOU Z, ZHAO L J, JI K F, et al. A domain-adaptive few-shot SAR ship detection algorithm driven by the latent similarity between optical and SAR images?[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5216318. |
135 | HU H X, LIN Z Z, HU Q, et al. Multi-source information fusion based DLaaS for traffic flow prediction[J]. IEEE Transactions on Computers, 2024, 73(4): 994-1003. |
136 | GUO Y, LIU R W, QU J X, et al. Asynchronous trajectory matching-based multimodal maritime data fusion for vessel traffic surveillance in inland waterways[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 12779-12792. |
137 | LIU Y, LIU J, YANG K, et al. AMP-net: Appearance-motion prototype network assisted automatic video anomaly detection system[J]. IEEE Transactions on Industrial Informatics, 2024, 20(2): 2843-2855. |
138 | 李伯虎. 云制造系统3.0: 一种适应新时代、新态势、新征程的先进智能制造系统[J]. 电气时代, 2022(1): 18-19. |
LI B H. Cloud manufacturing system 3.0-an advanced intelligent manufacturing system adapted to the new era, new situation and new journey[J]. Electric Age, 2022(1): 18-19 (in Chinese). | |
139 | MINNETT P J, ALVERA-AZCáRATE A, CHIN T M, et al. Half a century of satellite remote sensing of sea-surface temperature[J]. Remote Sensing of Environment, 2019, 233: 111366. |
140 | YANG G, YE Q H, XIA J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond[J]. Information Fusion, 2022, 77: 29-52. |
141 | UDDIN M Z, HASSAN M M, ALSANAD A, et al. A body sensor data fusion and deep recurrent neural network-based behavior recognition approach for robust healthcare[J]. Information Fusion, 2020, 55: 105-115. |
142 | ZHANG Y D, DONG Z C, WANG S H, et al. Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation[J]. Information Fusion, 2020, 64: 149-187. |
143 | JI B F, ZHANG X R, MUMTAZ S, et al. Survey on the Internet of vehicles: Network architectures and applications[J]. IEEE Communications Standards Magazine, 2020, 4(1): 34-41. |
144 | 汲克山, 刘思培, 李清玉, 等. 大模型在军事领域的应用与展望[C]∥第十二届中国指挥控制大会, 2024: 79-83. |
JI K S, LIU S P, LI Q Y, et al. The application and prospect of large models in the military field[C]∥The 12th China Command and Control Conference, 2024: 79-83 (in Chinese). | |
145 | PHAM H, GUAN M Y, ZOPH B, et al. Efficient neural architecture search via parameter sharing[C]∥International Conference on Machine Learning, 2018: 4095-4104. |
146 | RAKKA M, FOUDA M E, KHARGONEKAR P, et al. A review of state-of-the-art mixed-precision neural network frameworks?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 7793-7812. |
147 | WAN F, HUANG X, CAI D, et al. Knowledge fusion of large language models[DB/OL]. arXiv preprint: 2401. 10491, 2024. |
148 | ZHANG W, CAI M X, ZHANG T, et al. EarthGPT: A universal multimodal large language model for multisensor image comprehension in remote sensing domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5917820. |
149 | 卢策吾, 王鹤. 具身智能(embodied artificial intelligence)[EB/OL]. (2023-07-22) [2025-02-02]. . |
LU C, WANG H. Embodied AI(embodied artificial intelligence)[EB/OL]. (2023-07-22) [2025-02-02]. . | |
150 | LI S J, YU H X, DING W B, et al. Visual-tactile fusion for transparent object grasping in complex backgrounds[J]. IEEE Transactions on Robotics, 2023, 39(5): 3838-3856. |
/
〈 |
|
〉 |