Electronics and Electrical Engineering and Control

Development and prospects of multisource information fusion

  • You HE ,
  • Yu LIU ,
  • Yaowen LI ,
  • Ziran DING ,
  • Kai DONG ,
  • Yaqi CUI ,
  • Caisheng ZHANG ,
  • Xueqian WANG ,
  • Zhi LI ,
  • Chen GUO
Expand
  • 1.Information Fusion Institute,Naval Aviation University,Yantai 264001,China
    2.Department of Electronic Engineering,Tsinghua University,Beijing 100084,China
    3.Shenzhen International Graduate School,Tsinghua University,Shenzhen 518055,China

Received date: 2024-12-17

  Revised date: 2024-12-30

  Accepted date: 2025-02-10

  Online published: 2025-02-10

Supported by

National Natural Science Foundation of China(62388102)

Abstract

Multisource information fusion has undergone decades of development, expanding from classic signal processing issues to a multidisciplinary frontier field and covering a wide range of applications such as aerospace, intelligent transportation, industrial engineering, and security. This paper starts from the definition and principles of multisource information fusion, reviews the main development stages of information fusion technology, and summarizes the research progress of four basic scientific issues: fusion detection, fusion recognition, fusion estimation, and fusion association. The technology of multisource image fusion and machine learning methods oriented towards information fusion are also outlined. Based on this, the typical applications of information fusion in several fields are introduced. Finally, the development direction of information fusion technology and its applications are discussed.

Cite this article

You HE , Yu LIU , Yaowen LI , Ziran DING , Kai DONG , Yaqi CUI , Caisheng ZHANG , Xueqian WANG , Zhi LI , Chen GUO . Development and prospects of multisource information fusion[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(6) : 531672 -531672 . DOI: 10.7527/S1000-6893.2025.31672

References

1 GAO H B, CHENG B, WANG J Q, et al. Object classification using CNN-based fusion of vision and LIDAR in autonomous vehicle environment[J]. IEEE Transactions on Industrial Informatics201814(9): 4224-4231.
2 YEONG D J, VELASCO-HERNANDEZ G, BARRY J, et al. Sensor and sensor fusion technology in autonomous vehicles: A review[J]. Sensors202121(6): 2140.
3 WANG Q R, TIAN X Y, LI D C. Multimodal soft jumping robot with self-decision ability[J]. Smart Materials and Structures202130(8): 085038.
4 HRAMOV A E, MAKSIMENKO V A, PISARCHIK A N. Physical principles of brain-computer interfaces and their applications for rehabilitation, robotics and control of human brain states[J]. Physics Reports2021918: 1-133.
5 NASEER N, HONG K S. fNIRS-based brain-computer interfaces: A review[J]. Frontiers in Human Neuroscience20159: 3.
6 ABIRI R, BORHANI S, SELLERS E W, et al. A comprehensive review of EEG-based brain-computer interface paradigms[J]. Journal of Neural Engineering201916(1): 011001.
7 朱军. 会思考的硬核“椰城”: 城市大脑塑造未来科幻城市[J]. 互联网经济2020(S2): 68-71.
  ZHU J. Thinking hard-core “coconut city”: The urban brain shapes the future science fiction city[J]. Digital Economy2020(S2): 68-71 (in Chinese).
8 周光霞. 美军联合信息环境建设情况分析及启示[J]. 指挥与控制学报20162(4): 354-360.
  ZHOU G X. On JIE and its enlightenment to developments of networking information-centric system of systems[J]. Journal of Command and Control20162(4): 354-360 (in Chinese).
9 OpenAI. Video generation models as world simulators [EB/OL]. (2024-02-16) .
10 何友, 王国宏, 陆大?, 等. 多传感器信息融合及应用[M]. 北京: 电子工业出版社, 2000.
  HE Y, WANG G H, LU D J, et al. Multisensor information fusion with applications?[M]. Beijing: Publishing House of Electronics Industry, 2000 (in Chinese).
11 CIUONZO D, ROSSI P S, VARSHNEY P K. Distributed detection in wireless sensor networks under multiplicative fading via generalized score tests[J]. IEEE Internet of Things Journal20218(11): 9059-9071.
12 LI C X, LI G, VARSHNEY P K. Distributed detection of sparse signals with censoring sensors in clustered sensor networks[J]. Information Fusion202283: 1-18.
13 WANG X Q, LI G, QUAN C, et al. Distributed detection of sparse stochastic signals with quantized measurements: The generalized Gaussian case[J]. IEEE Transactions on Signal Processing201967(18): 4886-4898.
14 VARSHNEY P K. Distributed detection and data fusion[M]. New York: Springer, 1997.
15 ABRARDO A, BARNI M, KALLAS K, et al. Information fusion in distributed sensor networks with Byzantines[M]. Singapore: Springer, 2021.
16 KAYAALP M, BORDIGNON V, SAYED A H. Social opinion formation and decision making under communication trends[J]. IEEE Transactions on Signal Processing202472: 506-520.
17 VLASKI S, KAR S, SAYED A H, et al. Networked signal and information processing: Learning by multiagent systems[J]. IEEE Signal Processing Magazine202340(5): 92-105.
18 QUAN C, SRIRANGA N, YANG H D, et al. Efficient ordered-transmission based distributed detection under data falsification attacks[J]. IEEE Signal Processing Letters202330: 145-149.
19 TORRA V, NARUKAWA Y. Modeling decisions: Information fusion and aggregation operators[M]. Berlin: Springer, 2007.
20 HALL D, CHONG C Y, LLINAS J, et al. Distributed data fusion for network-centric operations[M]. Boca Raton: CRC Press, 2013.
21 YEOM S W, KIRUBARAJAN T, BAR-SHALOM Y. Track segment association, fine-step IMM and initialization with Doppler for improved track performance[J]. IEEE Transactions on Aerospace and Electronic Systems200440(1): 293-309.
22 杜渐, 夏学知. 面向航迹中断的模糊航迹关联算法[J]. 火力与指挥控制201338(6): 68-71, 76.
  DU J, XIA X Z. A fuzzy track association algorithm in track interrupt-oriented[J]. Fire Control & Command Control201338(6): 68-71, 76 (in Chinese).
23 何友, 彭应宁, 陆大?, 等. 分布式多传感器数据融合中的双门限航迹相关算法[J]. 电子科学学刊199719(6): 721-728.
  HE Y, PENG Y N, LU D J, et al. Binary track correlation algorithms in a distributed multisensor data fusion system[J]. Journal of Electronics & Information Technology199719(6): 721-728 (in Chinese).
24 何友, 陆大?, 彭应宁, 等. 基于模糊综合函数的航迹关联算法[J]. 电子科学学刊199921(1): 91-96.
  HE Y, LU D J, PENG Y N, et al. Track correlation algorithms based on fuzzy synthetic function[J]. Journal of Electronics & Information Technology199921(1): 91-96 (in Chinese).
25 徐毓, 金以慧. 基于多尺度小波变换和短时分形理论的航迹关联方法[J]. 控制与决策200318(4): 432-435, 440.
  XU Y, JIN Y H. Target tracks association based on multi-resolution wavelet transform and short-time fractal[J]. Control and Decision200318(4): 432-435, 440 (in Chinese).
26 TIAN W, WANG Y, SHAN X M, et al. Track-to-track association for biased data based on the reference topology feature[J]. IEEE Signal Processing Letters201421(4): 449-453.
27 何友, 宋强, 熊伟. 基于相位相关的航迹对准关联技术[J]. 电子学报201038(12): 2718-2723.
  HE Y, SONG Q, XIONG W. Track alignment-correlation technique based on phase correlation[J]. Acta Electronica Sinica201038(12): 2718-2723 (in Chinese).
28 XIONG W, XU P L, CUI Y Q, et al. Track segment association with dual contrast neural network[J]. IEEE Transactions on Aerospace and Electronic Systems202258(1): 247-261.
29 XIONG W, XU P L, CUI Y Q. HTG-TA: Heterogenous track graph for asynchronous track-to-track association[J]. IEEE Transactions on Aerospace and Electronic Systems202460(5): 7232-7250.
30 JIN B, TANG Y F, ZHANG Z K, et al. Radar and AIS track association integrated track and scene features through deep learning[J]. IEEE Sensors Journal202323(7): 8001-8009.
31 APTOULA E. Remote sensing image retrieval with global morphological texture descriptors[J]. IEEE Transactions on Geoscience and Remote Sensing201452(5): 3023-3034.
32 XIE J, FANG Y, ZHU F, et al. Deepshape: Deep learned shape descriptor for 3D shape matching and retrieval[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2015: 1275-1283.
33 LI P, REN P, ZHANG X Y, et al. Region-wise deep feature representation for remote sensing images[J]. Remote Sensing201810(6): 871.
34 XIONG W, XIONG Z Y, CUI Y Q, et al. A discriminative distillation network for cross-source remote sensing image retrieval[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing202013: 1234-1247.
35 CHEN H, DING G G, LIU X D, et al. IMRAM: Iterative matching with recurrent attention memory for cross-modal image-text retrieval[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 12652-12660.
36 CHI P D, FENG Y, ZHOU M L, et al. TIAR: Text-Image-audio retrieval with weighted multimodal re-ranking[J]. Applied Intelligence202353(19): 22898-22916.
37 ARAUJO A, GIROD B. Large-scale video retrieval using image queries[J]. IEEE Transactions on Circuits and Systems for Video Technology201828(6): 1406-1420.
38 HOTELLING H. Relations between two sets of variates[M]∥Breakthroughs in Statistics. New York: Springer, 1992: 162-190.
39 LV Y F, XIONG W, ZHANG X H, et al. Fusion-based correlation learning model for cross-modal remote sensing image retrieval[J]. IEEE Geoscience and Remote Sensing Letters202119: 6503205.
40 李浩然, 熊伟, 崔亚奇, 等. 相似度矩阵辅助遥感图像无监督哈希跨模态关联[J]. 光子学报202352(1): 216-227.
  LI H R, XIONG W, CUI Y Q, et al. Enhancing remote sensing image unsupervised hashing cross-modal correlation with similarity matrix?[J]. Acta Photonica Sinica202352(1): 216-227 (in Chinese).
41 QIN Z, ZHAO P B, ZHUANG T M, et al. A survey of identity recognition via data fusion and feature learning[J]. Information Fusion202391: 694-712.
42 徐从富, 耿卫东, 潘云鹤. 面向数据融合的DS方法综述[J]. 电子学报200129(3): 393-396.
  XU C F, GENG W D, PAN Y H. Review of dempster shafer method for data fusion[J]. Acta Electronica Sinica200129(3): 393-396 (in Chinese).
43 ZHAO J, DENG Y. Complex network modeling of evidence theory[J]. IEEE Transactions on Fuzzy Systems202129(11): 3470-3480.
44 LIU HZ, YANG WQ. Bayesian method and its application to multiple level decision fusion with distributed sensors[J]. Transactions of Beijing Institute of Technology19985: 536-540.
45 CHEN, S M, CHANG, Y C. Fuzzy decision making based on similarity measures and OWA operators?[J]. Fuzzy Sets and Systems2008159(12): 1437-1454.
46 LI H, WU X J, DURRANI T S. Infrared and visible image fusion with ResNet and zero-phase component analysis?[J]. Infrared Physics & Technology2019102: 103039.
47 WANG H M, AN W B, LI L, et al. Infrared and visible image fusion based on multi-channel convolutional neural network[J]. IET Image Processing202216(6): 1575-1584.
48 HOU R C, ZHOU D M, NIE R C, et al. VIF-net: An unsupervised framework for infrared and visible image fusion[J]. IEEE Transactions on Computational Imaging20206: 640-651.
49 MA J Y, YU W, LIANG P W, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion201948: 11-26.
50 RAO D Y, XU T Y, WU X J. TGFuse: An infrared and visible image fusion approach based on transformer and generative adversarial network[J]. IEEE Transactions on Image Processing2023, 1-12.
51 GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks?[DB/OL]. arXiv preprint: 1505. 07818, 2016.
52 ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2242-2251.
53 HONG D F, YOKOYA N, XIA G S, et al. X-ModalNet: A semi-supervised deep cross-modal network for classification of remote sensing data[J]. ISPRS Journal of Photogrammetry and Remote Sensing2020167: 12-23.
54 FENG Z X, SONG L L, YANG S Y, et al. Cross-modal contrastive learning for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing202361: 5517713.
55 HOFFMANN D S, CLASEN K N, DEMIR B. Transformer-based multi-modal learning for multi-label remote sensing image classification[C]∥IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2023: 4891-4894.
56 BAHADURI B, MING Z H, FENG F C, et al. Multimodal transformer using cross-channel attention for object detection in remote sensing images[C]∥2024 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2024: 2620-2626.
57 ZHANG F, BI X Y, ZHANG Z X, et al. HIFR-net: A HRRP-infrared fusion recognition network capable of handling modality missing and multisource data misalignment[J]. IEEE Sensors Journal202525(3): 5769-5781.
58 韩崇昭, 朱洪艳, 段战胜. 多源信息融合[M]. 第3版. 北京: 清华大学出版社, 2022.
  HAN C Z, ZHU H Y, DUAN Z S. Multisource information fusion?[M]. 3rd ed. Beijing: Tsinghua University Press, 2022 (in Chinese).
59 ZHU Y M, YOU Z S, ZHAO J, et al. The optimality for the distributed Kalman filtering fusion with feedback[J]. Automatica200137(9): 1489-1493.
60 JULIER S J, UHLMANN J K. A non-divergent estimation algorithm in the presence of unknown correlations[C]∥Proceedings of the 1997 American Control Conference. Piscataway: IEEE Press, 1997: 2369-2373.
61 FARRELL W J, GANESH C. Generalized chernoff fusion approximation for practical distributed data fusion[C]∥2009 12th International Conference on Information Fusion. Piscataway: IEEE Press, 2009: 555-562.
62 REINHARDT M, NOACK B, ARAMBEL P O, et al. Minimum covariance bounds for the fusion under unknown correlations[J]. IEEE Signal Processing Letters201522(9): 1210-1214.
63 SIJS J, LAZAR M. State fusion with unknown correlation: Ellipsoidal intersection[J]. Automatica201248(8): 1874-1878.
64 NOACK B, SIJS J, REINHARDT M, et al. Decentralized data fusion with inverse covariance intersection[J]. Automatica201779: 35-41.
65 REECE S, ROBERTS S. Generalised covariance union: A unified approach to hypothesis merging in tracking[J]. IEEE Transactions on Aerospace and Electronic Systems201046(1): 207-221.
66 SHAFIEEZADEH-ABADEH S, NGUYEN V A, KUHN D, et al. Wasserstein distributionally robust Kalman filtering[C]∥Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York: ACM, 2018: 8483-8492.
67 WANG S X, WU Z M, LIM A. Robust state estimation for linear systems under distributional uncertainty?[J]. IEEE Transactions on Signal Processing202169: 5963-5978.
68 ZORZI M. Distributed Kalman filtering under model uncertainty[J]. IEEE Transactions on Control of Network Systems20207(2): 990-1001.
69 YU X K, LI J X. Distributed robust Kalman filters under model uncertainty and multiplicative disturbance?[J]. IEEE Transactions on Aerospace and Electronic Systems202359(2): 973-988.
70 NIU D B, SONG E B, LI Z, et al. A marginal distributionally robust MMSE estimation for a multisensor system with Kullback-Leibler divergence constraints?[J]. IEEE Transactions on Signal Processing202371: 3772-3787.
71 HAGE J AL, NAJJAR M E EL, POMORSKI D. Multi-sensor fusion approach with fault detection and exclusion based on the Kullback-Leibler divergence: Application on collaborative multi-robot system[J]. Information Fusion201737: 61-76.
72 BAR-SHALOM Y. Update with out-of-sequence measurements in tracking: Exact solution[J]. IEEE Transactions on Aerospace and Electronic Systems200238(3): 769-777.
73 BAR-SHALOM Y, CHEN H M, MALLICK M. One-step solution for the multistep out-of-sequence-measurement problem in tracking[J]. IEEE Transactions on Aerospace and Electronic Systems200440(1): 27-37.
74 GOVAERS F, KOCH W. Generalized solution to smoothing and out-of-sequence processing?[J]. IEEE Transactions on Aerospace and Electronic Systems201450(3): 1739-1748.
75 KIM Y, HONG K, BANG H. Utilizing out-of-sequence measurement for ambiguous update in particle filtering[J]. IEEE Transactions on Aerospace and Electronic Systems201854(1): 493-501.
76 ZHANG S, BAR-SHALOM Y. Optimal update with multiple out-of-sequence measurements with arbitrary arriving order[J]. IEEE Transactions on Aerospace and Electronic Systems201248(4): 3116-3132.
77 GARCíA-FERNáNDEZ á F, YI W. Continuous-discrete multiple target tracking with out-of-sequence measurements[J]. IEEE Transactions on Signal Processing202169: 4699-4709.
78 MARELLI D, SUI T J, FU M Y. Distributed Kalman estimation with decoupled local filters?[J]. Automatica2021130: 109724.
79 BATTISTELLI G, CHISCI L. Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability?[J]. Automatica201450(3): 707-718.
80 BATTISTELLI G, CHISCI L, MUGNAI G, et al. Consensus-based linear and nonlinear filtering[J]. IEEE Transactions on Automatic Control201560(5): 1410-1415.
81 金浩. 多传感器网络化系统的分布式估计算法研究[D]. 哈尔滨: 黑龙江大学, 2022.
  JIN H. Research on distributed estimation algorithm of multi-sensor networked system[D]. Harbin: Helongjiang University, 2022 (in Chinese).
82 LI Y Z, QUEVEDO D E, LAU V, et al. Optimal periodic transmission power schedules for remote estimation of ARMA processes[J]. IEEE Transactions on Signal Processing201361(24): 6164-6174.
83 DEKKERS G, ROSAS F, VAN WATERSCHOOT T, et al. Dynamic sensor activation and decision-level fusion in wireless acoustic sensor networks for classification of domestic activities[J]. Information Fusion202277: 196-210.
84 ZHOU J M, GU G X, CHEN X. Distributed Kalman filtering over wireless sensor networks in the presence of data packet drops[J]. IEEE Transactions on Automatic Control201964(4): 1603-1610.
85 YANG H J, LI H, XIA Y Q, et al. Distributed Kalman filtering over sensor networks with transmission delays[J]. IEEE Transactions on Cybernetics202151(11): 5511-5521.
86 LIU H, NIU B, LI Y Z. False-data-injection attacks on remote distributed consensus estimation[J]. IEEE Transactions on Cybernetics202252(1): 433-443.
87 YANG W, ZHANG Y, CHEN G R, et al. Distributed filtering under false data injection attacks?[J]. Automatica2019102: 34-44.
88 LI L, YANG H, XIA Y Q, et al. Event-based distributed state estimation for linear systems under unknown input and false data injection attack[J]. Signal Processing2020170: 107423.
89 LYNEN S, ACHTELIK M W, WEISS S, et al. A robust and modular multi-sensor fusion approach applied to MAV navigation[C]?∥2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2013: 3923-3929.
90 TANG X L, ZHANG Z Q, QIN Y C. On-road object detection and tracking based on radar and vision fusion: A review[J]. IEEE Intelligent Transportation Systems Magazine202214(5): 103-128.
91 MAHFOUZ S, MOURAD-CHEHADE F, HONEINE P, et al. Target tracking using machine learning and Kalman filter in wireless sensor networks[J]. IEEE Sensors Journal201414(10): 3715-3725.
92 ZHANG Y, SONG B, DU X J, et al. Vehicle tracking using surveillance with multimodal data fusion[J]. IEEE Transactions on Intelligent Transportation Systems201819(7): 2353-2361.
93 CAO J W, ZHANG H Y, JIN L S, et al. A review of object tracking methods: From general field to autonomous vehicles[J]. Neurocomputing2024585: 127635.
94 FAN L W, ZHANG F, FAN H, et al. Brief review of image denoising techniques[J]. Visual Computing for Industry, Biomedicine, and Art20192(1): 7.
95 HASKINS G, KRUGER U, YAN P K. Deep learning in medical image registration: A survey[J]. Machine Vision and Applications202031(1): 8.
96 LI G. Advanced Sparsity-Driven Models and Methods for Radar Applications[M]. Stevenage: SciTech Publishing Inc., 2020.
97 LI S, KANG X, FANG L, et al. Pixel-level image fusion: A survey of the state of the art[J]. Information Fusion201733: 100-112.
98 WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence200931(2): 210-227.
99 GKILLAS A, AMPELIOTIS D, BERBERIDIS K. Connections between deep equilibrium and sparse representation models with application to hyperspectral image denoising[J]. IEEE Transactions on Image Processing202332: 1513-1528.
100 AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing200654(11): 4311-4322.
101 SCETBON M, ELAD M, MILANFAR P. Deep K-SVD denoising[J]. IEEE Transactions on Image Processing202130: 5944-5955.
102 ZHANG H, XU H, TIAN X, et al. Image fusion meets deep learning: A survey and perspective. Information Fusion2021, 76: 323-336.
103 LI H, WU X J. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing201928(5): 2614-2623.
104 ZHAO F, ZHAO W D, YAO L B, et al. Self-supervised feature adaption for infrared and visible image fusion[J]. Information Fusion202176: 189-203.
105 LIU J Y, WU Y H, HUANG Z B, et al. SMoA: Searching a modality-oriented architecture for infrared and visible image fusion[J]. IEEE Signal Processing Letters202128: 1818-1822.
106 XU H, WANG X Y, MA J Y. DRF: Disentangled representation for visible and infrared image fusion[J]. IEEE Transactions on Instrumentation and Measurement202170: 5006713.
107 TANG L F, YUAN J T, MA J Y. Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network[J]. Information Fusion202282: 28-42.
108 LI J, HUO H T, LIU K J, et al. Infrared and visible image fusion using dual discriminators generative adversarial networks with Wasserstein distance[J]. Information Sciences2020529: 28-41.
109 GU Y S, WANG X Y, ZHANG C, et al. Advanced driving assistance based on the fusion of infrared and visible images[J]. Entropy202123(2): 239.
110 WANG X Q, ZHU D, LI G, et al. Proposal-copula-based fusion of spaceborne and airborne SAR images for ship target detection[J]. Information Fusion202277: 247-260.
111 LI W M, WANG X Q, LI G, et al. NN-copula-CD: A copula-guided interpretable neural network for change detection in heterogeneous remote sensing images[DB/OL]. arXiv preprint: 2303.17448, 2023.
112 FANG Q Y, WANG Z K. Cross-modality attentive feature fusion for object detection in multispectral remote sensing imagery[J]. Pattern Recognition2022130: 108786.
113 WANG Q W, CHI Y K, SHEN T, et al. Improving RGB-infrared object detection by reducing cross-modality redundancy[J]. Remote Sensing202214(9): 2020.
114 JIANG X, LI G, LIU Y, et al. Change detection in heterogeneous optical and SAR remote sensing images via deep homogeneous feature fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing202013: 1551-1566.
115 MATASCI G, PLANTE J, KASA K, et al. Deep learning for vessel detection and identification from spaceborne optical imagery[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences2021, V-3-2021: 303-310.
116 ZHANG L P, LIU Y, WANG X Q, et al. GLRT-based metric learning for remote sensing object retrieval[DB/OL]. arXiv preprint: 2410.05773, 2024.
117 XIAO G, BAVIRISETTI D P, LIU G, et al. Image fusion[M]. Singapore: Springer, 2020.
118 LIU C X, YANG H, FU J L, et al. Learning trajectory-aware transformer for video super-resolution[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 5677-5686.
119 IRVIN J A, LIU E R, CHEN J C, et al. TEOChat: A large vision-language assistant for temporal earth observation data[DB/OL]. arXiv preprint: 2410.06234, 2024.
120 GAONKAR A, CHUKKAPALLI Y, RAMAN P J, et al. A comprehensive survey on multimodal data representation and information fusion algorithms[C]∥2021 International Conference on Intelligent Technologies (CONIT). Piscataway: IEEE Press, 2021: 1-8.
121 KLUPACS J, GOSTAR A K, RATHNAYAKE T, et al. Multiagent information fusion for connected driving: A review[J]. IEEE Access202210: 85030-85049.
122 LIN S Z, HAN Z, LI D W, et al. Integrating model- and data-driven methods for synchronous adaptive multi-band image fusion[J]. Information Fusion202054: 145-160.
123 WEN J T, JIANG D Z, TU G, et al. Dynamic interactive multiview memory network for emotion recognition in conversation[J]. Information Fusion202391(C): 123-133.
124 XU J, REN Y Z, SHI X S, et al. UNTIE: Clustering analysis with disentanglement in multi-view information fusion[J]. Information Fusion2023100: 101937.
125 NIE F P, LI Z H, WANG R, et al. An effective and efficient algorithm for K-means clustering with new formulation[J]. IEEE Transactions on Knowledge and Data Engineering202335(4): 3433-3443.
126 LIU T, ZHOU Z, YANG L J. Layered isolation forest: A multi-level subspace algorithm for improving isolation forest[J]. Neurocomputing2024581: 127525.
127 DU J X, HAN G J, LIN C, et al. ITrust: An anomaly-resilient trust model based on isolation forest for underwater acoustic sensor networks[J]. IEEE Transactions on Mobile Computing202221(5): 1684-1696.
128 ZHANG P, HE F Z, ZHANG H, et al. Real-time malicious traffic detection with online isolation forest over SD-WAN[J]. IEEE Transactions on Information Forensics and Security202318: 2076-2090.
129 YANG C, LIU T T, CHEN G H, et al. ICSFF: Information constraint on self-supervised feature fusion for few-shot remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing202462: 5800312.
130 ZHANG Y X, LI W, ZHANG M M, et al. Graph information aggregation cross-domain few-shot learning for hyperspectral image classification[J]. IEEE Transactions on Neural Networks and Learning Systems202435(2): 1912-1925.
131 WU L K, LI Z, ZHAO H K, et al. Recognizing unseen objects via multimodal intensive knowledge graph propagation[C]∥Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 2618-2628.
132 JIANG X, LI G, ZHANG X P, et al. A semisupervised Siamese network for efficient change detection in heterogeneous remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing202160: 4700718.
133 CHUN D, LEE S, KIM H. USD: Uncertainty-based one-phase learning to enhance pseudo-label reliability for semi-supervised object detection[J]. IEEE Transactions on Multimedia202426: 6336-6347.
134 ZHOU Z, ZHAO L J, JI K F, et al. A domain-adaptive few-shot SAR ship detection algorithm driven by the latent similarity between optical and SAR images?[J]. IEEE Transactions on Geoscience and Remote Sensing202462: 5216318.
135 HU H X, LIN Z Z, HU Q, et al. Multi-source information fusion based DLaaS for traffic flow prediction[J]. IEEE Transactions on Computers202473(4): 994-1003.
136 GUO Y, LIU R W, QU J X, et al. Asynchronous trajectory matching-based multimodal maritime data fusion for vessel traffic surveillance in inland waterways[J]. IEEE Transactions on Intelligent Transportation Systems202324(11): 12779-12792.
137 LIU Y, LIU J, YANG K, et al. AMP-net: Appearance-motion prototype network assisted automatic video anomaly detection system[J]. IEEE Transactions on Industrial Informatics202420(2): 2843-2855.
138 李伯虎. 云制造系统3.0: 一种适应新时代、新态势、新征程的先进智能制造系统[J]. 电气时代2022(1): 18-19.
  LI B H. Cloud manufacturing system 3.0-an advanced intelligent manufacturing system adapted to the new era, new situation and new journey[J]. Electric Age2022(1): 18-19 (in Chinese).
139 MINNETT P J, ALVERA-AZCáRATE A, CHIN T M, et al. Half a century of satellite remote sensing of sea-surface temperature[J]. Remote Sensing of Environment2019233: 111366.
140 YANG G, YE Q H, XIA J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond[J]. Information Fusion202277: 29-52.
141 UDDIN M Z, HASSAN M M, ALSANAD A, et al. A body sensor data fusion and deep recurrent neural network-based behavior recognition approach for robust healthcare[J]. Information Fusion202055: 105-115.
142 ZHANG Y D, DONG Z C, WANG S H, et al. Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation[J]. Information Fusion202064: 149-187.
143 JI B F, ZHANG X R, MUMTAZ S, et al. Survey on the Internet of vehicles: Network architectures and applications[J]. IEEE Communications Standards Magazine20204(1): 34-41.
144 汲克山, 刘思培, 李清玉, 等. 大模型在军事领域的应用与展望[C]∥第十二届中国指挥控制大会, 2024: 79-83.
  JI K S, LIU S P, LI Q Y, et al. The application and prospect of large models in the military field[C]∥The 12th China Command and Control Conference, 2024: 79-83 (in Chinese).
145 PHAM H, GUAN M Y, ZOPH B, et al. Efficient neural architecture search via parameter sharing[C]∥International Conference on Machine Learning, 2018: 4095-4104.
146 RAKKA M, FOUDA M E, KHARGONEKAR P, et al. A review of state-of-the-art mixed-precision neural network frameworks?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence202446(12): 7793-7812.
147 WAN F, HUANG X, CAI D, et al. Knowledge fusion of large language models[DB/OL]. arXiv preprint: 2401. 10491, 2024.
148 ZHANG W, CAI M X, ZHANG T, et al. EarthGPT: A universal multimodal large language model for multisensor image comprehension in remote sensing domain[J]. IEEE Transactions on Geoscience and Remote Sensing202462: 5917820.
149 卢策吾, 王鹤. 具身智能(embodied artificial intelligence)[EB/OL]. (2023-07-22) [2025-02-02]. .
  LU C, WANG H. Embodied AI(embodied artificial intelligence)[EB/OL]. (2023-07-22) [2025-02-02]. .
150 LI S J, YU H X, DING W B, et al. Visual-tactile fusion for transparent object grasping in complex backgrounds[J]. IEEE Transactions on Robotics202339(5): 3838-3856.
Outlines

/