special column

Diffusion model-driven multi-objective generative design of supercritical airfoils

  • Jing WANG ,
  • Wei LIU ,
  • Hairun XIE ,
  • Miao ZHANG ,
  • Tuliang MA
Expand
  • 1.School of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai  201100,China
    2.Shanghai Aircraft Design and Research Institute,Shanghai  201210,China
    3.Key Laboratory for Satellite Digitalization Technology,Innovation Academy for Microsatellites,Chinese Academy of Sciences,Shanghai  201210,China

Received date: 2024-09-14

  Revised date: 2024-12-18

  Accepted date: 2025-01-20

  Online published: 2025-02-06

Supported by

National Natural Science Foundation of China(U23A2069);Shanghai Natural Science Foundation(24ZR1436800)

Abstract

In the engineering practice of aircraft aerodynamic design, design specifications are typically proposed by the overall engineering team, while the aerodynamic design department implements design goals through numerous iterations and extensive numerical simulations. This process usually consumes significant resources. Generative models show the potential to directly generate design solutions that meet predefined goals, significantly reducing the iterative process in traditional design. This paper proposes a multi-objective generative airfoil design method based on diffusion models. By conditioning on multiple performance metrics such as buffeting lift coefficient, cruise drag coefficient and thickness, the method generates the airfoil designs that simultaneously satisfy these metrics. The use of conditional diffusion models to progressively generate effective airfoils in the design space avoids the complex iterative calculations of traditional optimization methods. Comparative experiments with conditional variational autoencoders demonstrate the advantages of diffusion models in terms of generation accuracy, stability, and diversity. The results indicate that diffusion models can not only generate airfoils that meet performance requirements but also offer greater diversity and design space exploration capability, providing an efficient new approach for future airfoil design.

Cite this article

Jing WANG , Wei LIU , Hairun XIE , Miao ZHANG , Tuliang MA . Diffusion model-driven multi-objective generative design of supercritical airfoils[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(10) : 631210 -631210 . DOI: 10.7527/S1000-6893.2025.31210

References

1 韩忠华, 高正红, 宋文萍, 等. 翼型研究的历史、 现状与未来发展[J]. 空气动力学学报202139(6): 1-36.
  HAN Z H, GAO Z H, SONG W P, et al. On airfoil research and development: history, current status, and future directions[J]. Acta Aerodynamica Sinica202139(6): 1-36 (in Chinese).
2 BARRETT T R, BRESSLOFF N W, KEANE A J. Airfoil shape design and optimization using multifidelity analysis and embedded inverse design[J]. AIAA Journal200644(9): 2051-2060.
3 SUN H. Wind turbine airfoil design using response surface method[J]. Journal of Mechanical Science and Technology201125(5): 1335-1340.
4 XIA C-C, JIANG T-T, CHEN W-F. Particle swarm optimization of aerodynamic shapes with nonuniform shape parameter-based radial basis function[J]. Journal of Aerospace Engineering201730(3): 04016089.
5 Lighthill M J. A new method of two-dimensional aerodynamic design[R]. London: Aeronautical Research Council, 1945.
6 TAKANASHI S. Iterative three-dimensional transonic wing design using integral equations[J]. Journal of Aircraft198522(8): 655-660.
7 BUI-THANH T, DAMODARAN M, WILLCOX K. Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition[J]. AIAA Journal200442(8): 1505-1516.
8 白俊强, 邱亚松, 华俊. 改进型Gappy POD翼型反设计方法[J]. 航空学报201334(4): 762-771.
  Bai J, Qiu Y, Hua J. Improved Airfoil Inverse Design Method Based on Gappy POD[J]. Acta Aeronauticaet Astronautica Sinica. 201334(4): 762-771 (in Chinese).
9 OBAYASHI S. Inverse optimization method for aerodynamic shape design[M]∥Recent Development of Aerodynamic Design Methodologies. Wiesbaden: Vieweg+Teubner Verlag, 1999: 25-53.
10 KHARAL A, SALEEM A. Neural networks based airfoil generation for a given C p using Bezier-PARSEC parameterization[J]. Aerospace Science and Technology201223(1): 330-344.
11 SUN G, SUN Y J, WANG S Y. Artificial neural network based inverse design: Airfoils and wings[J]. Aerospace Science and Technology201542: 415-428.
12 ZHANG Y, SUNG W J, MAVRIS D N. Application of convolutional neural network to predict airfoil lift coefficient[C]∥2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2018.
13 YANG Y J, LI R Z, ZHANG Y F, et al. Flowfield prediction of airfoil off-design conditions based on a modified variational autoencoder[J]. AIAA Journal202260(10): 5805-5820.
14 SEKAR V, ZHANG M Q, SHU C, et al. Inverse design of airfoil using a deep convolutional neural network[J]. AIAA Journal201957(3): 993-1003.
15 KINGMA D P, REZENDE D J, MOHAMED S, et al. Semi-supervised learning with deep generative models[C]∥Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 2. New York: ACM, 2014: 3581-3589.
16 Mirza M, Osindero S. Conditional generative adversarial nets[Z/OL]. arXiv preprint: 1411.1784, 2014.
17 陈树生, 贾苜梁, 林家豪, 等. 生成式模型赋能飞行器技术应用研究进展与展望[J]. 航空学报202546(10): 631194.
  CHEN S S, JIA M L, LIN J H, et al. Research progress and prospects of empowering aircraft technology applications with generative models[J]. Acta Aeronautica et Astronautica Sinica202546(10): 631194 (in Chinese).
18 吴光辉, 王景, 谢海润, 等. 数据与知识联合赋能的民机智能气动设计[J]. 航空学报202546(6): 531485.
  WU G H, WANG J, XIE H R, et al. Intelligent aerodynamic design of civil aircraft based on data and knowledge joint empowerment[J]. Acta Aeronautica et Astronautica Sinica202546(6): 531485 (in Chinese).
19 ACHOUR G, SUNG W J, PINON-FISCHER O J, et al. Development of a conditional generative adversarial network for airfoil shape optimization[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
20 BERTRAND X, TOST F, CHAMPAGNEUX S. Wing airfoil pressure calibration with deep learning[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019.
21 DU X S, HE P, MARTINS J R R A. A B-spline-based generative adversarial network model for fast interactive airfoil aerodynamic optimization[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
22 田洁华, 孙迪, 屈峰, 等. 基于CST-GAN的翼型参数化方法[J]. 航空学报202344(18): 128280.
  TIAN J H, SUN D, QU F, et al. Airfoil parameterization method based on CST-GAN[J]. Acta Aeronautica et Astronautica Sinica202344(18): 128280 (in Chinese).
23 CHEN W, FUGE M. BézierGAN: automatic generation of smooth curves from interpretable low-dimensional parameters[EB/OL]. (2018-08) [2025-02-26]. .
24 HEYRANI NOBARI A, CHEN W, AHMED F. Range-GAN: range-constrained generative adversarial network for conditioned design synthesis[C]∥ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York: ASME, 2021: V03BT03A039.
25 XIE H R, WANG J, ZHANG M. Parametric generative schemes with geometric constraints for encoding and synthesizing airfoils[J]. Engineering Applications of Artificial Intelligence2024128: 107505.
26 WANG J, LI R, HE C, et al. An inverse design method for supercritical airfoil based on conditional generative models[J]. Chinese Journal of Aeronautics202235(3): 62-74.
27 LIU J, WU J Y, XIE H R, et al. AFBench: a large-scale benchmark for airfoil design[EB/OL]. (2024-06) [2025-2-26]. .
28 GRAVES R, FARIMANI A B. Airfoil diffusion: denoising diffusion model for conditional airfoil generation[EB/OL]. (2024-8) [2025-02-26]. .
29 LI R, ZHANG Y, CHEN H. Pressure distribution feature-oriented sampling for statistical analysis of supercritical airfoil aerodynamics[J]. Chinese Journal of Aeronautics202235(4):134-147.
30 白文. 经典跨声速翼型RAE2822数据分析[J]. 空气动力学学报202341(6): 55-70.
  BAI W. Analyses of wind-tunnel test data of the transonic airfoil RAE2822[J]. Acta Aerodynamica Sinica202341(6): 55-70 (in Chinese).
31 HO J, JAIN A, ABBEEL P, et al. Denoising diffusion probabilistic models[C]∥Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 6840-6851.
32 HO J, SALIMANS T. Classifier-free diffusion guidance[D/OL]. arXiv preprint: 2207.12598, 2022.
33 LAURENS V D M, Hinton G.Visualizing Data using t-SNE[J].Journal of Machine Learning Research20089(86): 2579-2605.
34 XIE H R, WANG J, ZHANG M. Knowledge-embedded meta-learning model for lift coefficient prediction of airfoils[J]. Expert Systems with Applications2023233: 121002.
Outlines

/