Electronics and Electrical Engineering and Control

A clock self-synchronized moving target localization method in distributed radar system

  • Haibo SONG ,
  • Jie WANG ,
  • Guofu WU ,
  • Caizhi FAN ,
  • Gongjian WEN
Expand
  • 1.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
    2.College of Electronic Science,National University of Defense Technology,Changsha 410073,China

Received date: 2024-10-09

  Revised date: 2024-11-15

  Accepted date: 2025-01-03

  Online published: 2025-01-21

Supported by

Natural Science Foundation of Hunan Province(2023JJ40680)

Abstract

Current technological methods cannot achieve precise clock synchronization among radar nodes when they are deployed on distributed mobile platforms. Besides, non-ideal clock synchronization among the radar nodes will result in inaccurate time delay and Doppler shift measurements of the signal, making existing methods effective in target localization. For the moving target localization problem in presence of clock synchronization errors among radar nodes after distributed radar time synchronization, this paper proposes a clock self-synchronized target localization method,which estimates the position and velocity of the moving target while correcting the clock synchronization errors among the radar nodes and optimizing the clock synchronization parameters. Specifically, based on the hybrid maximum likelihood and maximum a posteriori probability estimation theory, a moving target localization and clock synchronization algorithm is recommended. This algorithm first lists the estimation process of estimating the moving target position and velocity; then, estimates the clock synchronization errors. To estimate the moving target position and velocity, a localization method based on analytical initial value solving and parameter estimation iterative optimization is proposed.Based on the estimate of the moving target, the clock synchronization errors among the radar nodes are figured out.The experimental results show that the proposed clock self-synchronized target localization method can effectively estimate the position and velocity of the moving target and the clock synchronization errors among the radar nodes with low computational complexity.

Cite this article

Haibo SONG , Jie WANG , Guofu WU , Caizhi FAN , Gongjian WEN . A clock self-synchronized moving target localization method in distributed radar system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(12) : 331365 -331365 . DOI: 10.7527/S1000-6893.2025.31365

References

[1] 何子述, 李军, 刘红明, 等. MIMO雷达[M]. 北京: 国防工业出版社, 2017.
  HE Z S, LI J, LIU H M, et al. MIMO radar[M]. Beijing: National Defense Industry Press, 2017 (in Chinese).
[2] 鲁耀兵, 高红卫. 分布孔径雷达[M]. 北京: 国防工业出版社, 2017.
  LU Y B, GAO H W. Distributed aperture radar[M]. Beijing: National Defense Industry Press, 2017 (in Chinese).
[3] LI J, STOICA P. MIMO radar with colocated antennas[J]. IEEE Signal Processing Magazine200724(5): 106-114.
[4] HAIMOVICH A M, BLUM R S, CIMINI L J. MIMO radar with widely separated antennas?[J]. IEEE Signal Processing Magazine200725(1): 116-129.
[5] FISHLER E, HAIMOVICH A, BLUM R, et al. MIMO radar: An idea whose time has come[C]?∥Proceedings of the 2004 IEEE Radar Conference. Piscataway: IEEE Press, 2004: 71-78.
[6] GODRICH H. Target localization in MIMO radar systems[D]. New Jersey: New Jersey Institute of Technology, 2010.
[7] WEISS A J. Direct geolocation of wideband emitters based on delay and Doppler[J]. IEEE Transactions on Signal Processing201159(6): 2513-2521.
[8] YI W, ZHOU T, AI Y, et al. Suboptimal low complexity joint multi-target detection and localization for non-coherent MIMO radar with widely separated antennas[J]. IEEE Transactions on Signal Processing202068: 901-916.
[9] 周涛. 分布式多站雷达直接定位技术研究[D]. 成都: 电子科技大学, 2021.
  ZHOU T. Research on direct positioning technology of distributed multi-station radar[D]. Chengdu: University of Electronic Science and Technology of China, 2021 (in Chinese).
[10] GODRICH H, HAIMOVICH A M, BLUM R S. Target localization accuracy gain in MIMO radar-based systems?[J]. IEEE Transactions on Information Theory201056(6): 2783-2803.
[11] LIANG J L, LEUNG C S, SO H C. Lagrange programming neural network approach for target localization in distributed MIMO radar[J]. IEEE Transactions on Signal Processing201664(6): 1574-1585.
[12] AMIRI R, BEHNIA F, NOROOZI A. Efficient joint moving target and antenna localization in distributed MIMO radars[J]. IEEE Transactions on Wireless Communications201918(9): 4425-4435.
[13] HO K C, XU W W. An accurate algebraic solution for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing200452(9): 2453-2463.
[14] 孙霆, 董春曦, 董阳阳, 等. 一种基于观测站数目最小化的TDOA/FDOA无源定位算法[J]. 航空学报201940(9): 322902.
  SUN T, DONG C X, DONG Y Y, et al. A TDOA/FDOA passive location algorithm with the minimum number of stations[J]. Acta Aeronautica et Astronautica Sinica201940(9): 322902 (in Chinese).
[15] DU Y S, WEI P. An explicit solution for target localization in noncoherent distributed MIMO radar systems[J]. IEEE Signal Processing Letters201421(9): 1093-1097.
[16] NOROOZI A, SEBT M ALI, OVEIS A H. Efficient weighted least squares estimator for moving target localization in distributed MIMO radar with location uncertainties[J]. IEEE Systems Journal201913(4): 4454-4463.
[17] AMIRI R, BEHNIA F, MALEKI SADR M A. Efficient positioning in MIMO radars with widely separated antennas[J]. IEEE Communications Letters201721(7): 1569-1572.
[18] SONG H B, WEN G J, ZHU L X, et al. A novel TSWLS method for moving target localization in distributed MIMO radar systems?[J]. IEEE Communications Letters201923(12): 2210-2214.
[19] HO K C, LU X N, KOVAVISARUCH L. Source localization using TDOA and FDOA measurements in the presence of receiver location errors: Analysis and solution[J]. IEEE Transactions on Signal Processing200755(2): 684-696.
[20] SUN M, HO K C. An asymptotically efficient estimator for TDOA and FDOA positioning of multiple disjoint sources in the presence of sensor location uncertainties[J]. IEEE Transactions on Signal Processing201159(7): 3434-3440.
[21] 孙霆, 董春曦. 传感器参数误差下的运动目标TDOA/FDOA无源定位算法[J]. 航空学报202041(2): 323317.
  SUN T, DONG C X. TDOA/FDOA passive localization algorithm for moving target with sensor parameter errors[J]. Acta Aeronautica et Astronautica Sinica202041(2): 323317 (in Chinese).
[22] SUN T, WANG W. Efficient multistatic radar localization algorithms for a uniformly accelerated moving object with sensor parameter errors[J]. IEEE Transactions on Aerospace and Electronic Systems202359(6): 7559-7574.
[23] ZHAO Y S, HU D X, ZHAO Y J, et al. Moving target localization in distributed MIMO radar with transmitter and receiver location uncertainties[J]. Chinese Journal of Aeronautics201932(7): 1705-1715.
[24] SONG H B, WEN G J, ZHU L X. An approximately efficient estimator for moving target localization in distributed MIMO radar systems in presence of sensor location errors[J]. IEEE Sensors Journal202020(2): 931-938.
[25] RUI L Y, HO K C. Elliptic localization: Performance study and optimum receiver placement[J]. IEEE Transactions on Signal Processing201462(18): 4673-4688.
[26] ZHANG Y, HO K C. Multistatic moving object localization by a moving transmitter of unknown location and offset[J]. IEEE Transactions on Signal Processing202068: 4438-4453.
[27] WEN G J, SONG H B, GAO F, et al. Target localization in asynchronous distributed MIMO radar systems with a cooperative target[J]. IEEE Transactions on Wireless Communications202221(6): 4098-4113.
[28] AMIRI R, KAZEMI S A R, BEHNIA F, et al. Efficient elliptic localization in the presence of antenna position uncertainties and clock parameter imperfections[J]. IEEE Transactions on Vehicular Technology201968(10): 9797-9805.
[29] SONG H B, WEN G J, LIANG Y Y, et al. Target localization and clock refinement in distributed MIMO radar systems with time synchronization errors[J]. IEEE Transactions on Signal Processing202169: 3088-3103.
[30] KAY S M. Fundamentals of statistical signal processing[M]. Englewood Cliffs: Prentice-Hall PTR, 1993: 139-141.
[31] NIELSEN H B. Damping parameter in Marquardt’?s method[M]. IMM: Technical University of Denmark, Lyngby-Denmark, 1999: 7-11.
Outlines

/