Material Engineering and Mechanical Manufacturing

Research status and prospect of space robot operation technology

  • Xilun DING ,
  • Yitong CHEN ,
  • Chengcai WANG ,
  • Kun XU
Expand
  • School of Mechanical Engineering and Automation,Beihang University,Beijing 100191,China

Received date: 2024-11-20

  Revised date: 2024-12-09

  Accepted date: 2024-12-30

  Online published: 2025-01-14

Supported by

National Natural Science Foundation of China(52405003);Beijing Nova Program

Abstract

Space robots serve as indispensable tools for executing tasks such as on-orbit servicing, planetary exploration, sample retrieval, and the construction of extraterrestrial facilities. The operational technologies of space robots encompass multiple aspects, such as visual perception, precise modeling, planning and control, human-robot interaction, and multi-robot collaboration. These technologies are essential to ensure the efficient and accurate execution of diverse space operations. This paper systematically reviews representative space robots and their operation technologies world-wide. Key techniques involved in the operation of space robots are analyzed from four perspectives: visual perception and localization in unstructured environments, dynamic modeling of rigid-flexible coupled systems, planning and control under dynamic constraints and limited resources, and human-machine interaction and multi-agent collaborative operations. Furthermore, challenges and future directions for the autonomous and intelligent operation of space robots are discussed in the context of China’‍s evolving deep-space exploration strategies and mission requirements.

Cite this article

Xilun DING , Yitong CHEN , Chengcai WANG , Kun XU . Research status and prospect of space robot operation technology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(6) : 531556 -531556 . DOI: 10.7527/S1000-6893.2024.31556

References

1 刘宏, 刘冬雨, 蒋再男. 空间机械臂技术综述及展望?[J]. 航空学报202142(1): 524164.
  LIU H, LIU D Y, JANG Z N. Space manipulator technology: Review and prospect?[J]. Acta Aeronautica et Astronautica Sinica202142(1): 524164 (in Chinese).
2 孟光, 韩亮亮, 张崇峰. 空间机器人研究进展及技术挑战[J]. 航空学报202142(1): 523963.
  MENG G, HAN L L, ZHANG C F. Research progress and technical challenges of space robot[J]. Acta Aeronautica et Astronautica Sinica202142(1): 523963 (in Chinese).
3 王明明, 罗建军, 袁建平, 等. 空间在轨装配技术综述[J].航空学报202142(1): 523913.
  WANG M M, LUO J J, YUAN J P, et al. In-orbit assembly technology: Review[J]. Acta Aeronautica et Astronautica Sinica202142(1): 523913 (in Chinese).
4 张哲, 刘传凯, 王明明, 等. 空间作业智能操控技术研究与展望[J]. 中国科学:技术科学202454(2): 289-303.
  ZHANG Z, LIU C K, WANG M M, et al. Development and prospects of space intelligent operation?[J]. SCIENTIA SINICA Technologica202454(2): 289-303 (in Chinese).
5 GAO Y, CHIEN S. Review on space robotics: Toward top-level science through space exploration?[J]. Science Robotics20172(7): 5074.
6 刘宏, 蒋再男, 刘业超. 空间机械臂技术发展综述[J].载人航天201521(5): 435-443.
  LIU H, JIANG Z N, LIU Y C. Review of space manipulator technology[J]. Manned Spaceflight201521(5): 435-443 (in Chinese).
7 陈钢, 高贤渊, 赵治恺, 等. 空间机械臂智能规划与控制技术[J]. 南京航空航天大学学报202254(1): 1-16.
  CHEN G, GAO X Y, ZHAO Z K, et al. Review on intelligent planning and control technology of space manipulator[J]. Journal of Nanjing University of Aeronautics & Astronautics202254(1): 1-16 (in Chinese).
8 RYBUS T. Obstacle avoidance in space robotics: Review of major challenges and proposed solutions?[J]. Progress in Aerospace Sciences2018101: 31-48.
9 JORGENSEN G, BAINS E. SRMS history, evolution and lessons learned?[C]?∥AIAA SPACE 2011 Conference & Exposition, 2011: 7277.
10 ARVIDSON R E, BELL III J F, BELLUTTA P, et al. Spirit mars rover mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater?[J]. Journal of Geophysical Research: Planets2010115(E7): E00F03.
11 BADGER J M, STRAWSER P, FARRELL L, et al. Robonaut 2 and Watson: Cognitive dexterity for future exploration?[C]?∥2018 IEEE Aerospace Conference, 2018: 1-8.
12 LI C, HU H, YANG M F, et al. Characteristics of the lunar samples returned by the Chang’E-5 mission[J]. National Science Review20229(2): 188.
13 NESNAS I A D, FESQ L M, VOLPE R A. Autonomy for space robots: Past, present, and future?[J]. Current Robotics Reports20212(3): 251-263.
14 MOGHADDAM B M, CHHABRA R. On the guidance, navigation and control of in-orbit space robotic missions: A survey and prospective vision[J]. Acta Astronautica2021184: 70-100.
15 JIANG Z, CAO X, HUANG X, et al. Progress and development trend of space intelligent robot technology[J]. Space: Science & Technology20222022: 9832053.
16 POST M A, YAN X T, LETIER P. Modularity for the future in space robotics: A review[J]. Acta Astronautica2021189: 530-547.
17 ARNEY D, MULVANEY J, WILLIAMS C, et al. In-space Servicing, Assembly, and Manufacturing (ISAM) state of play-2023 edition[C]∥Consortium for Space Mobility and ISAM Capabilities (COSMIC) Kickoff, 2023.
18 GIBBS G, SACHDEV S. Canada and the international space station program: Overview and status[J]. Acta Astronautica200251(1-9): 591-600.
19 MCGREGOR R, OSHINOWO L. Flight 6A: deployment and checkout of the space station remote manipulator system (SSRMS)[C]?∥Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), 2001.
20 MA O. Contact dynamics modelling for the simulation of the space station manipulators handling pay-loads[C]?∥IEEE International Conference on Robotics and Automation, 19952: 1252-1258.
21 MA O, BUHARIWALA K, ROGER N, et al. MDSF-a generic development and simulation facility for flexible, complex robotic systems[J]. Robotica199715(1):49-62.
22 TALEBI H A, PATEL R V, ASMER H. Neural network based dynamic modeling of flexible-link manipulators with application to the SSRMS?[J]. Journal of Robotic Systems200017(7): 385-401.
23 ALBERTS T E, XIA H, CHEN Y. Dynamic analysis to evaluate viscoelastic passive damping augmentation for the space shuttle remote manipulator system[J]. Journal of Dynamic Systems, Measurement, and Control1992114(3): 468-475.
24 TATSUO M, SATOH N, KUWAO F. Safety approach of Japanese experiment module remote manipulator system[C]?∥Proceedings of 5th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 1990: 531-537.
25 UYAMA N, YOSHIDA K, NAKANISHI H, et al. Contact dynamics modeling for snare wire type of end effector in capture operation[J]. Transactions of The Japan Society for Aeronautical and Space Sciences201210(28): 77-84.
26 DIDOT F, OORT M, KOUWEN J, et al. The ERA system: Control architecture and performance results[C]?∥6th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), 2001: 7.
27 LARYSSA P, LINDSAY E, LAYI O, et al. International space station robotics: a comparative study of ERA, JEMRMS and MSS[C]?∥7th ESA Workshop on Advanced Space Technologies for Robotics and Automation, 2002: 19-21.
28 BOUMANS R, HEEMSKERK C. The European robotic arm for the international space station[J]. Robotics and Autonomous systems199823(1-2): 17-27.
29 LI D, WANG Y. Overview of the Chinese space station manipulator[C]?∥AIAA SPACE 2015 Conference and Exposition, 2015: 4540.
30 王友渔, 胡成威, 唐自新, 等. 我国空间站机械臂系统关键技术发展[J]. 航天器工程202231(6): 147-155.
  WANG Y Y, HU C W, TANG Z X, et al. Key technologies development of the Space Station Manipulator System[J]. Spacecraft Engineering202231(6): 147-155 (in Chinese).
31 胡成威, 李大明, 王耀兵, 等. 空间站机械臂方案设计及验证[J]. 中国航天2023(1): 21-28.
  HU C W, LI D M, WANG Y B, et al. Research on China’s space station system technology[J]. Aerospace China2023(1): 21-28 (in Chinese).
32 HUANG P, ZHANG F, CAI J, et al. Dexterous tethered space robot: Design, measurement, control, and experiment[J]. IEEE Transactions on Aerospace and Electronic Systems201753(3): 1452-1468.
33 FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences201468: 1-26.
34 ODA M. Summary of NASDA’s ETS-Ⅶ robot satellite mission[J]. Journal of Robotics and Mechatronics200012(4): 417-424.
35 MUKHERJI R, RAY D A, STIEBER M, et al. Special purpose dexterous manipulator (SPDM) advanced control features and development test results[C]?∥Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), 2001.
36 LENNON J, HENSHAW C, PURDY W. An architecture for autonomous control of a robotic satellite grappling mission[C]∥AIAA Guidance, Navigation and Control Conference and Exhibit, 2008298(0704): 239-241.
37 KELM B E, ANGIELSKI J A, BUTCHER S T, et al. FREND: Pushing the envelope of space robotics[J]. Space Research and Satellite Technology2008: 239-241.
38 HARPER J. DARPA set to deliver new space capabilities[J]. National Defense2020105(801): 32-35.
39 COLL G T, WEBSTER G K, PANKIEWICZ O K, et al. NASA’s Exploration and In-Space Services (NExIS) division OSAM-1 propellant transfer subsystem progress 2020[C]?∥2020 AIAA Propulsion and Energy Forum, 2020: 20205004116.
40 HUEBNER L D, SHESTOPLE P, PATANé S, et al. OSAM-2: plans and progress for the first demonstration of structural manufacturing in space[C]?∥NSMMS & CRASTE Joint Symposia, 2022.
41 DIFTLER M A, MEHLING J S, ABDALLAH M E, et al. Robonaut 2-the first humanoid robot in space[C]∥2011 IEEE International Conference on Robotics and Automation, 2011: 2178-2183.
42 BRIDGWATER L B, IHRKE C A, DIFTLER M A, et al. The Robonaut 2 hand-designed to do work with tools[C]?∥2012 IEEE International Conference on Robotics and Automation, 2012: 3425-3430.
43 DIFTLER M A, AHLSTROM T D, AMBROSE R O, et al. Robonaut 2-Initial activities on-board the ISS[C]∥2012 IEEE Aerospace Conference, 2012: 1-12.
44 RADFORD N A, STRAWSER P, HAMBUCHEN K, et al. Valkyrie: NASA’?s first bipedal humanoid robot[J]. Journal of Field Robotics201532(3): 397-419.
45 JORGENSEN S J, WONSICK M, PATERSON M, et al. Cockpit interface for locomotion and manipulation control of the NASA Valkyrie humanoid in virtual reality (VR)[R]. Texas: Johnson Space Center, 2022.
46 MA B, JIANG Z, LIU Y, et al. Advances in space robots for on-orbit servicing: A comprehensive review[J]. Advanced Intelligent Systems20235(8): 2200397.
47 DING X L, WANG Y C, WANG Y B, et al. A review of structures, verification, and calibration technologies of space robotic systems for on-orbit servicing[J]. Science China Technological Sciences202164(3): 462-480.
48 新华网. 科研成果用于“遨龙一号”飞行器 [EB/OL]. (2016-7-5) [2024-3-5]. .
  XINHUANET. The research results were used in the Aolong-One spacecraft. [EB/OL]. (2016-7-5) [2024-3-5]. (in Chinese).
49 刘宏, 李志奇, 刘伊威, 等. 天宫二号机械手关键技术及在轨试验[J]. 中国科学:技术科学201848(12): 1313-1320.
  LIU H, LI Z Q, LIU Y W, et al. Key technologies of TianGong-2 robotic hand and its on-orbit experiments[J]. SCIENTIA SINICA Technologica201848: 1313-1320 (in Chinese).
50 UREY H C, MARTI K. Surveyor results and the composition of the Moon[J]. Science1968161(3845): 1030-1032.
51 JAFFE L D, BATTERSON S A, BROWN JR W E, et al. Principal scientific results of the Surveyor 3 mission[J]. Journal of Geophysical Research196873(12): 3983-3987.
52 LE CROISSETTE D H. The scientific instruments on surveyor[J]. IEEE Transactions on Aerospace and Electronic Systems1969 (1): 2-21.
53 MALENKOV M. Self-propelled automatic chassis of Lunokhod-1: History of creation in episodes[J]. Frontiers of Mechanical Engineering201611(1): 60-86.
54 BASILEVSKY A T, KRESLAVSKY M A, KARAC-HEVTSEVA I P, et al. Morphometry of small impact craters in the Lunokhod-1 and Lunokhod-2 study areas[J]. Planetary and Space Science201492: 77-87.
55 ZERIGUI A, WU X, DENG Z Q. A survey of rover control systems[J]. IJCSES20071(2): 106.
56 申振荣, 张伍, 贾阳, 等. 嫦娥三号巡视器及其技术特点分析[J]. 航天器工程201524(5): 8-13.
  SHEN Z R, ZHANG W, JIA Y, et al. System design and technical characteristics analysis of Chang’?E-3 lunar Rover[J]. Spacecraft Engineering201524(5): 8-13 (in Chinese).
57 吴伟仁, 周建亮, 王保丰, 等. 嫦娥三号“玉兔号”巡视器遥操作中的关键技术[J]. 中国科学:信息科学201444(4): 425-440.
  WU W R, ZHOU J L, WANG B F, et al. Key technologies in the teleoperation of Chang’E-3 “Jade Rabbit” rover[J]. SCIENCE CHINA Information Sciences201444(4): 425-440 (in Chinese).
58 张玉花, 肖杰, 张晓伟, 等. 嫦娥三号巡视器移动设计与实现[J]. 中国科学:技术科学201444(5): 483-491.
  ZHANG Y H, XIAO J, ZHANG X W, et al. Design and implementation of Chang’E-3 rover location system[J]. SCIENTIA SINICA Technologica201444(5): 483-491 (in Chinese).
59 邢琰, 刘祥, 滕宝毅, 等. 月球表面巡视探测自主局部避障规划[J]. 控制理论与应用201936(12): 2042-2046.
  XING Y, LIU X, TENG B Y, et al. Autonomous local obstacle avoidance path planning of lunar surface exploration rovers[J]. Control Theory and Applications201936(12): 2042-2046 (in Chinese).
60 吴伟仁, 王琼, 唐玉华, 等. “嫦娥4号”月球背面软着陆任务设计[J]. 深空探测学报20174(2): 111-117.
  WU W R, WANG Q, TANG Y H,et al. Design of Chang’E-4 lunar far-side soft-landing mission[J]. Journal of Deep Space Exploration20174(2): 111-117 (in Chinese).
61 党兆龙, 李海飞, 彭松, 等. 嫦娥四号巡视器系统设计与验证[J]. 航天器工程201928(4): 37-42.
  DANG Z L, LI H F, PENG S, et al. System design and verification of Chang’E 4 rover[J]. Spacecraft Engineering201928(4): 37-42 (in Chinese).
62 张宽, 卢皓, 李立春, 等. “玉兔二号”复杂月背环境休眠与唤醒控制方法[J]. 深空探测学报20218(6): 555-563.
  ZHANG K, LU H, LI L C,et al. A control method of sleep-reboot in the complex lunar far-side environment of Yutu-2[J]. Journal of Deep Space Exploration20218(6): 555-563 (in Chinese).
63 王泰杰, 苏建华, 刘传凯, 等. 玉兔二号月面大间距变倾角成像的空间分辨率建模及其应用分析[J]. 中国科学:技术科学202050(8): 1081-1094.
  WANG T J, SU J H, LIU C K, et al. Modeling and application analysis of the pixel-spatial resolution of Yutu 2 rover with large-scale transformed images[J]. SCIENTIA SINICA Technologica202050(8): 1081-1094 (in Chinese).
64 张宽, 于天一, 胡晓东, 等. 月面表层无人采样控制技术[J]. 深空探测学报20229(2): 173-182.
  ZHANG K, YU T Y, HU X D, et al. Control technology for unmanned sampling of lunar surface[J]. Journal of Deep Space Exploration20229(2): 173-182 (in Chinese).
65 邓湘金, 郑燕红, 金晟毅, 等. 嫦娥五号采样封装系统设计与实现[J]. 中国科学:技术科学202151(7): 753-762.
  DENG X J, ZHENG Y H, JIN S Y, et al. Design and implementation of sampling, encapsulating, and sealing system of Chang’E-5[J]. SCIENTIA SINICA Technologica202151: 753-762 (in Chinese).
66 刘茜, 高宇辉, 刘传凯, 等. 月面采样机械臂动态任务规划方法研究[J]. 中国科学:技术科学202151(12): 1492-1506.
  LIU Q, GAO Y H, LIU C K, et al. Dynamic mission planning method for the lunar sampling robotic arm?[J]. SCIENTIA SINICA Technologica202151(12): 1492-1506 (in Chinese).
67 盛瑞卿, 孟占峰, 赵洋, 等. 月球背面无人自动采样返回任务分析与要点设计[J]. 中国空间科学技术202444(5): 1-14.
  SHENG R Q, MENG Z F, ZHAO Y, et al. Analysis and key design of lunar far-side robotic sampling and return mission[J]. Chinese Space Science and Technology202444(5): 1-14 (in Chinese).
68 ANDREWS D. Viper Rover: Flight build and environmental test status[C]?∥75th International Astronautical Congress (IAC), 2024: 20240010794.
69 SCHUSTER M J, MüLLER M G, BRUNNER S G, et al. The ARCHES space-analogue demonstration mission: Towards heterogeneous teams of autonomous robots for collaborative scientific sampling in planetary exploration?[J]. IEEE Robotics and Automation Letters20205(4): 5315-5322.
70 LOPES L, GOVINDARAJ S, BODO B, et al. PRO-ACT-Planetary robots deployed for assembly and construction of future lunar ISRU and supporting infrastructures[C]?∥EGU General Assembly Conference Abstracts, 2020: 11595.
71 GOVINDARAJ S, SANZ I, BUT A, et al. Multi-robot cooperation for lunar base assembly and construction[C]?∥Proceedings of International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), 2020: 5073.
72 MATIJEVIC J. Autonomous navigation and the sojourner microrover?[J]. Science1998280(5362): 454-455.
73 MAIMONE M, BIESIADECKI J, TUNSTEL E, et al. Intelligence for space robotics [M]. 2006: 45-69.
74 TAYLOR R H. Planning and execution of straight line manipulator trajectories[J]. IBM Journal of Research and Development197923(4): 424-436.
75 BAUMGARTNER E T, BONITZ R G, MELKO J P, et al. Mobile manipulation for the Mars exploration rover-a dexterous and robust instrument positioning system[J]. IEEE Robotics & Automation Magazine200613(2): 27-36.
76 ESTLIN T A, BORNSTEIN B J, GAINES D M, et al. Aegis automated science targeting for the MER opportunity rover[J]. ACM Transactions on Intelligent Systems and Technology (TIST)20123(3): 1-19.
77 BONITZ R G, HSIA T C. Robust internal force-tracking impedance control for coordinated multi-arm manipulation-theory and experiments?[J]. Robotic and Manufacturing Systems1996: 28-30.
78 BONITZ R, SHIRAISHI L, ROBINSON M, et al. The phoenix mars lander robotic arm[C]?∥2009 IEEE Aerospace Conference, 2009: 1-12.
79 BONITZ R G, SHIRAISHI L, ROBINSON M, et al. NASA Mars 2007 Phoenix lander robotic arm and icy soil acquisition device?[J]. Journal of Geophysical Research: Planets2008113(E3): E00A01.
80 WELCH R, LIMONADI D, MANNING R. Systems engineering the curiosity rover: A retrospective?[C]??∥2013 8th International Conference on System of Systems Engineering, 2013: 70-75.
81 BILLING R, FLEISCHNER R. Mars science laboratory robotic arm?[C]?∥14th European Space Mechanisms & Tribology Symposium. Constance: European Space Agency, 2011: 363-370.
82 GROTZINGER J P, CRISP J, VASAVADA A R, et al. Mars Science Laboratory mission and science investigation[J]. Space Science Reviews2012170: 5-56.
83 TOUPET O, BIESIADECKI J, RANKIN A, et al. Terrain-adaptive wheel speed control on the Curiosity Mars rover: Algorithm and flight results[J]. Journal of Field Robotics202037(5): 699-728.
84 VERMA V, MAIMONE M W, GAINES D M, et al. Autonomous robotics is driving Perseverance rover’s progress on Mars[J]. Science Robotics20238(80): 3099.
85 FRANCIS R, ESTLIN T, DORAN G, et al. AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use[J]. Science Robotics20172(7): 4582.
86 OTSU K, MATHERON G, GHOSH S, et al. Fast approximate clearance evaluation for rovers with articulated suspension systems[J]. Journal of Field Robotics202037(5): 768-785.
87 王连国, 朱岩, 张宝明, 等. “祝融号”火星车有效载荷系统设计与实现[J]. 中国科学:技术科学202454(1): 149-164.
  WANG L G, ZHU Y, ZHANG B M, et al. Design and implementation of payload system of the Zhurong Mars rover[J]. SCIENTIA SINICA Technologica202454(1): 149-164 (in Chinese).
88 张建福, 李连升, 陈建新, 等. “祝融号”火星车太阳敏感器设计与验证[J]. 航空学报202446(5): 330882.
  ZHANG J F, LI L S, CHEN J X, et al. Sun sensor designed and qualified for Zhurong Mars Rover[J]. Acta Aeronautica et Astronautica Sinica202446(5): 330882 (in Chinese).
89 陈建新, 邢琰, 李志平, 等. 祝融号火星车自主环境感知与避障技术[J]. 中国科学:技术科学202252(8): 1186-1197.
  CHEN J X, XING Y, LI Z P, et al. Autonomous environment perception and obstacle avoidance technologies of Zhurong Mars rover[J]. SCIENTIA SINICA Technologica202252(8): 1186-1197 (in Chinese).
90 侯建, 齐乃明. 月球车视觉系统立体匹配算法研究[J]. 南京理工大学学报(自然科学版)2008(2): 176-180.
  HOU J, QI N M, et al. Stereo Matching Algorithm for Lunar Rover[J]. Journal of Nanjing University of Science and Technology (Natural Science)2008(2): 176-180 (in Chinese).
91 毛晓艳, 苗志富, 陈建新, 等. “祝融号”火星车立体视觉算法并行设计与实现[J]. 深空探测学报20229(2): 202-210.
  MAO X Y, MIAO Z F, CHEN J X, et al. Parallel design and implementation of stereo vision algorithm of Zhurong Mars rover?[J]. Journal of Deep Space Exploration20229(2): 202-210 (in Chinese).
92 GOLDBERG S B, MAIMONE M W, MATTHIES L. Stereo vision and rover navigation software for planetary exploration?[C]?∥IEEE Aerospace Conference, 20025: 5.
93 HOWARD T M, MORFOPOULOS A, MORRISON J, et al. Enabling continuous planetary rover navigation through FPGA stereo and visual odometry?[C]?∥2012 IEEE Aerospace Conference, 2012: 1-9.
94 曹凤萍, 王荣本. 月球车视觉系统立体匹配算法[J]. 吉林大学学报(工学版)201141(1): 24-28.
  CAO F P, WANG R B. Stereo matching algorithm for lunar rover vision system[J]. Journal of Jilin University (Engineering and Technology Edition)201141(1): 24-28 (in Chinese).
95 AYHAN B, DAO M, KWAN C, et al. A novel utilization of image registration techniques to process mastcam images in mars rover with applications to image fusion, pixel clustering, and anomaly detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing201710(10): 4553-4564.
96 XU F, DI K, LI R, et al. Automatic feature registration and DEM generation for Martian surface mapping[J]. International Achieves of Photogrammetry, Remote Sensing and Spatial Information Sciences200234(2): 549-554.
97 DUNLOP H, THOMPSON D R, WETTERGREEN D. Multiscale features for detection and segmentation of rocks in mars images?[C]?∥2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007: 1-7.
98 BURL M C, THOMPSON D R, DEGRANVILLE C, et al. Rockster: Onboard rock segmentation through edge regrouping?[J]. Journal of Aerospace Information Systems201613(8): 329-342.
99 PAAR G, ORTNER T, TATE C, et al. Three-dimensional data preparation and immersive mission-spanning visualization and analysis of Mars 2020 Mastcam-Z stereo image sequences[J]. Earth and Space Science202310(3): e2022EA002532.
100 BECHTOLD A, PAAR G, GAROLLA F, et al. Planetary scientific target detection via deep learning: A case study for finding shatter cones in Mars rover images[J]. Meteoritics & Planetary Science202358(9): 1274-1286.
101 LI R, SQUYRES S W, ARVIDSON R E, et al. Initial results of rover localization and topographic mapping for the 2003 Mars exploration rover mission[J]. Photogrammetric Engineering and Remote Sensing200571: 1129-1142.
102 LI R, MA F, XU F, et al. Localization of mars rovers using descent and surface-based image data[J]. Journal of Geophysical Research: Planets2002107(E11): 411-418.
103 CHIODINI S, PERTILE M, DEBEI S, et al. Mars rovers localization by matching local horizon to sur-face digital elevation models[C]∥2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), 2017: 374-379.
104 BAILEY P, SORICE C, TREBI-OLLENNU A, et al. Deployed instrument monocular localization on the InSight Mars lander[C]∥2020 IEEE Aerospace Conference, 2020: 1-13.
105 YANG T, YAN S, MA W, et al. Joint dynamic analysis of space manipulator with planetary gear train trans-mission[J]. Robotica201634(5): 1042-1058.
106 ZHAO Y, BAI Z F. Dynamics analysis of space robot manipulator with joint clearance[J]. Acta Astronautica201168(7-8): 1147-1155.
107 XIANG W, YAN S. Dynamic analysis of space robot manipulator considering clearance joint and parameter uncertainty: Modeling, analysis and quantification?[J]. Acta Astronautica2020169: 158-169.
108 XIANG W, YAN S, WU J. Dynamic analysis of planar mechanical systems considering stick-slip and Stribeck effect in revolute clearance joints[J]. Nonlinear Dynamics201995: 321-341.
109 郑棋棋, 汤奇荣, 张凌楷, 等. 空间机械臂建模及分析方法综述[J]. 载人航天201723(1): 82-97.
  ZHENG Q Q, TANG Q R, ZHANG L K, et al. Review of modelling and analysis methods of space manipulators[J]. Manned Spaceflight201723(1): 82-97 (in Chinese).
110 VAFA Z, DUBOWSKY S. The kinematics and dynamics of space manipulators: The virtual manipulator approach?[J]. The International Journal of Robotics Research19909(4): 3-21.
111 PAPADOPOULOS E, DUBOWSKY S. On the nature of control algorithms for free-floating space manipulators[J]. IEEE Transactions on Robotics and Automation19917(6): 750-758.
112 NANOS K, PAPADOPOULOS E. On the use of free-floating space robots in the presence of angular momentum[J]. Intelligent Service Robotics20114: 3-15.
113 NANOS K, PAPADOPOULOS E G. On the dynamics and control of free-floating space manipulator systems in the presence of angular momentum[J]. Frontiers in Robotics and AI20174: 26.
114 JIA Q, YUAN B, CHEN G, et al. Kinematic and dynamic characteristics of the free-floating space manipulator with free-swinging joint failure[J]. International Journal of Aerospace Engineering20192019(1): 2679152.
115 LIU S, WU L, LU Z. Impact dynamics and control of a flexible dual-arm space robot capturing an object[J]. Applied Mathematics and Computation2007185(2): 1149-1159.
116 HUANG P, WANG D, MENG Z, et al. Impact dynamic modeling and adaptive target capturing control for tethered space robots with uncertainties?[J]. IEEE/ASME Transactions on Mechatronics201621(5): 2260-2271.
117 SHANG D Y, LI X P, YIN M, et al. Dynamic modeling and RBF neural network compensation control for space flexible manipulator with an underactuated hand[J]. Chinese Journal of Aeronautics202437(3): 417-439.
118 CHRISTIDI-LOUMPASEFSKI O O, PAPADOPOULOS E. On the parameter identification of free-flying space manipulator systems[J]. Robotics and Autonomous Systems2023160: 104310.
119 SHERWOOD R, MISHKIN A, CHIEN S, et al. An integrated planning and scheduling prototype for automated Mars rover command generation?[C]?∥Sixth European Conference on Planning, 2001.
120 MOSER J, HOFFMAN J, HILDEBRAND R, et al. An autonomous task assignment paradigm for autonomous robotic in-space assembly[J]. Frontiers in Robotics and AI20229: 709905.
121 AGRAWAL J, CHI W, CHIEN S, et al. Analyzing the effectiveness of rescheduling and flexible execution methods to address uncertainty in execution duration for a planetary rover?[J]. Robotics and Autonomous Systems2021140: 103758.
122 RABIDEAU G, BENOWITZ E. Prototyping an onboard scheduler for the mars 2020 rover[C]?∥International Workshop on Planning and Scheduling for Space, 2017: 1-9.
123 XIE Y, ZHANG Z, WU X, et al. Obstacle avoidance and path planning for multi-joint manipulator in a space robot[J]. IEEE Access20198: 3511-3526.
124 SACHDEVA R, HAMMOND R, BOCKMAN J, et al. Autonomy and perception for space mining[C]∥2022 International Conference on Robotics and Automation. (ICRA), 2022: 4087-4093.
125 董少洋, 居鹤华. 基于SD*lite的月球车任务规划算法[J]. 计算机测量与控制201220(9): 2532-2535.
  DONG S Y, JU H H. A mission planning algorithm of the lunar rover based on SD*lite[J]. Computer Measurement and Control201220(9): 2532-2535 (in Chinese).
126 李群智, 贾阳, 彭松, 等. 月面巡视探测器任务规划顶层设计与实现[J]. 深空探测学报20174(1): 58-65.
  LI Q Z, JIA Y, PENG S, et al. Top design and implementation of the lunar rover mission planning[J]. Journal of Deep Space Exploration20174(1): 58-65 (in Chinese).
127 SáNCHEZ-IBáNEZ J R, PéREZ-DEL-PULGAR C J, AZKARATE M, et al. Dynamic path planning for reconfigurable rovers using a multi-layered grid[J]. Engineering Applications of Artificial Intelligence201986: 32-42.
128 LIU X F, CAI G P, WANG M M, et al. Contact control for grasping a non-cooperative satellite by a space robot[J]. Multibody System Dynamics202050: 119-141.
129 HAN D, HUANG P, LIU X, et al. Combined spacecraft stabilization control after multiple impacts during the capture of a tumbling target by a space robot[J]. Acta Astronautica2020176: 24-32.
130 徐文福, 周瑞兴, 孟得山. 空间机器人在轨更换ORU的力/位混合控制方法[J]. 宇航学报201334(10): 1353-1361.
  XU W F, ZHOU R X, MENG D S. A hybrid force/position control method of space robot performing on-orbit ORU replacement[J]. Journal of Astronautics201334(10): 1353-1361 (in Chinese).
131 WEI C, LUO J, DAI H, et al. Learning-based adaptive prescribed performance control of postcapture space robot-target combination without inertia identifications[J]. Acta Astronautica2018146: 228-242.
132 CHU Z, MA Y, CUI J. Adaptive reactionless control strategy via the PSO-ELM algorithm for free-floating space robots during manipulation of unknown objects[J]. Nonlinear Dynamics201891: 1321-1335.
133 TURCO S, PERRYMAN S. Ground control concept for on-orbit robotic maintenance operations on the international space station?[C]?∥The Space OPS Conference, 2004: 145.
134 王永, 谢圆, 周建亮. 空间机器人大时延遥操作技术研究综述[J]. 宇航学报201031(2): 299-306.
  WANG Y, XIE Y, ZHOU J L. Review of long time delay teleoperation technology of space robots[J]. Journal of Astronautics201031(2): 299-306 (in Chinese).
135 PREUSCHE C, REINTSEMA D, LANDZETTEL K, et al. Robotics component verification on ISS ROKVISS-preliminary results for telepresence?[C]?∥2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006: 4595-4601.
136 郭祥艳, 刘传凯, 王晓雪. 加拿大移动服务系统地面遥操作模式综述[J]. 深空探测学报20185(1): 78-84.
  GUO X Y, LIU C K, WANG X X. A survey on tele-operation of Canada’s mobile servicing system[J]. Journal of Deep Space Exploration20185 (1): 78-84 (in Chinese).
137 HIRZINGER G, BRUNNER B, DIETRICH J, et al. Sensor-based space robotics-ROTEX and its telerobotic features[J]. IEEE Transactions on Robotics and Automation19939(5): 649-663.
138 LEE N, BACKES P, BURDICK J, et al. Architecture for in-space robotic assembly of a modular space telescope?[J]. Journal of Astronomical Telescopes, Instruments, and Systems20162(4): 041207.
139 DEREMETZ M, DEBROISE M, DE STEFANO M, et al. Design and integration of a multi-arm installation robot demonstrator for orbital large assembly[C]∥73rd International Astronautical Congress, 2022.
140 张崇峰, 王慎泉, 韩亮亮. 载人月球探测月面活动机器人的发展机遇及关键技术[J]. 载人航天202430(5): 553-561.
  ZHANG C F, WANG S Q, HAN L L. Development opportunities and key technologies of lunar robot in manned lunar exploration[J]. Manned Spaceflight202430(5): 553-561 (in Chinese).
141 徐岩松, 李俊麟, 陈思宇, 等.人工智能在月面机器人领域的前沿探索综述[J]. 载人航天202430(5): 562-578.
  XU Y S, LI J L, CHEN S Y. Frontiers of lunar robotics: An overview of artificial intelligence research[J]. Manned Spaceflight202430(5): 562-578 (in Chinese).
142 BISCHOFF E, MEYER F, INGA J, et al. Multi-robot task allocation and scheduling considering cooperative tasks and precedence constraints[C]?∥2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2020: 3949-3956.
143 赵宇庭, 徐瑞, 于登云, 等. 时间代价启发式多月基装备协同任务规划方法[J]. 宇航学报202243(10): 1277-1290.
  ZHAO Y T, XU R, YU D Y, et al. Time-cost heuristic planning method for multi-robot cooperative lunar mission[J]. Journal of Astronautics202243(10): 1277-1290 (in Chinese).
144 NI S, CHEN W, JU H, et al. Coordinated trajectory planning of a dual-arm space robot with multiple avoidance constraints?[J]. Acta Astronautica2022195: 379-391.
145 高添, 吴云华, 张枭, 等. 基于双层博弈的多臂在轨服务航天器路径规划[J]. 空间科学学报202242(6): 1230-1238.
  GAO T, WU Y H, ZHANG X, et al. Two-level game based multi-arm on-orbit servicing spacecraft path planning?[J]. Chinese Journal of Space Science202242(6): 1230-1238 (in Chinese).
146 YAN L, XU W, HU Z, et al. Virtual-base modeling and coordinated control of a dual-arm space robot for target capturing and manipulation?[J]. Multibody System Dynamics201945: 431-455.
147 ZHANG X, LIU J, GAO Q, et al. Adaptive robust decoupling control of multi-arm space robots using time-delay estimation technique?[J]. Nonlinear Dynamics2020100(3): 2449-2467.
148 HUANG P, XU Y, LIANG B. Dynamic balance control of multi-arm free-floating space robots[J]. International Journal of Advanced Robotic Systems20052(2): 13.
149 ZITKOVICH B, YU T, XU S, et al. Rt-2: Vision-language-action models transfer web knowledge to robotic control[C]∥Conference on Robot Learning, 2023: 2165-2183.
150 LIN K, AGIA C, MIGIMATSU T, et al. Text2motion: From natural language instructions to feasible plans[J]. Autonomous Robots202347(8): 1345-1365.
151 LIANG J, HUANG W, XIA F, et al. Code as policies: Language model programs for embodied control?[C]?∥2023 IEEE International Conference on Robotics and Automation (ICRA), 2023: 9493-9500.
152 HUANG W, WANG C, ZHANG R, et al. Voxposer: Composable 3d value maps for robotic manipulation with language models[DB/OL]. arXiv: , 2023.
153 YAO Q. Adaptive fuzzy neural network control for a space manipulator in the presence of output constraints and input nonlinearities[J]. Advances in Space Research202167(6): 1830-1843.
Outlines

/