ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Review of key technologies for hydrogen powered unmanned aerial vehicles
Received date: 2024-12-03
Revised date: 2024-12-11
Accepted date: 2024-12-26
Online published: 2025-01-07
Supported by
Key R & D Program of Zhejiang(2024SSY0087);Fundamental Research Funds for the Central University
As one of the most promising types of Unmanned Aerial Vehicles (UAVs) powered by new energy sources, hydrogen-powered UAVs are closely linked to the concept of green aviation and low-altitude economic scenarios. To provide a reference for the design of hydrogen powered UAVs, this paper summarizes the key areas and technical issues involved in the development of hydrogen powered UAVs, and reviews relevant research. The review first outlines the development history, technical advantages, application scenarios, and common examples of hydrogen powered UAVs. Subsequently, it categorizes and discusses the key issues related to hydrogen powered UAVs in four major technical areas: overall design technology, structural design technology, power system design technology, and flight control technology. Moreover, the technical frontiers faced in each area and the current research conducted by researchers both domestically and internationally are analyzed. Finally, combining the relevant technological advancements, the paper proposes suggestions and outlooks for the development of hydrogen powered UAVs. The research indicates that the development potential of hydrogen powered UAVs has not been fully explored, and joint efforts across multiple disciplines and fields to leverage hydrogen’s crucial role in extending UAV endurance are required so as to reduce onboard weight, and promote green aviation development.
Jinwu XIANG , Kai MA , Zi KAN , Daochun LI , Kexin ZHENG , Hanxuan CHEN . Review of key technologies for hydrogen powered unmanned aerial vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(5) : 531603 -531603 . DOI: 10.7527/S1000-6893.2024.31603
1 | 张扬军, 彭杰, 钱煜平, 等. 氢能航空的关键技术与挑战[J]. 航空动力, 2021(1): 20-23. |
ZHANG Y J, PENG J, QIAN Y P, et al. Key technologies and challenges of hydrogen powered aviation[J]. Aerospace Power, 2021(1): 20-23 (in Chinese). | |
2 | 宋薇薇, 杨凤田, 项松, 等. 氢能飞机研制进展及产业化前景分析[J]. 中国工程科学, 2023, 25(5): 192-201. |
SONG W W, YANG F T, XIANG S, et al. Development progress and industrialization prospect of hydrogen-powered aircraft[J]. Strategic Study of CAE, 2023, 25(5): 192-201 (in Chinese). | |
3 | 王俊潼, 包丹文, 周佳怡, 等. 低空空域规划研究现状与展望[J/OL]. 航空学报, (2024-10-30)[2024-11-30]. . |
WANG J T, BAO D W, ZHOU J Y, et al. Research status and prospect of low-altitude airspace planning[J/OL]. Acta Aeronautica et Astronautica Sinca, (2024-10-30) [2024-11-30]. (in Chinese). | |
4 | 赖耀胜, 李龙. 氢能飞机发展现状分析[J]. 航空动力, 2021(6): 37-40. |
LAI Y S, LI L. Hydrogen powered aircraft[J]. Aerospace Power, 2021(6): 37-40 (in Chinese). | |
5 | TIWARI S, PEKRIS M J, DOHERTY J J. A review of liquid hydrogen aircraft and propulsion technologies[J]. International Journal of Hydrogen Energy, 2024, 57: 1174-1196. |
6 | 赵国栋, 徐悦, 朱海涛, 等. 氢燃料通用航空器发展及飞行安全问题探讨[J]. 航空科学技术, 2023, 34(12): 9-19. |
ZHAO G D, XU Y, ZHU H T, et al. Discussion on development and flight safety of hydrogen-powered general aircraft[J]. Aeronautical Science & Technology, 2023, 34(12): 9-19 (in Chinese). | |
7 | OESINGMANN K, GRIMME W, SCHEELHAASE J. Hydrogen in aviation: A simulation of demand, price dynamics, and CO2 emission reduction potentials[J]. International Journal of Hydrogen Energy, 2024, 64: 633-642. |
8 | 向锦武, 阚梓, 邵浩原, 等. 长航时无人机关键技术研究进展[J]. 哈尔滨工业大学学报, 2020, 52(6): 57-77. |
XIANG J W, KAN Z, SHAO H Y, et al. A review of key technologies for long-endurance unmanned aerial vehicle[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 57-77 (in Chinese). | |
9 | SCHMIDTCHEN U, BEHREND E, POHL H W, et al. Hydrogen aircraft and airport safety[J]. Renewable and Sustainable Energy Reviews, 1997, 1(4): 239-269. |
10 | 高扬, 张志强, 王赵蕊佳, 等. 氢能源动力试飞关键技术分析与发展展望[J]. 航空工程进展, 2024, 15(6): 77-85. |
GAO Y, ZHANG Z Q, WANG Z R J, et al. Analysis and development prospect of key technologies for hydrogen power flight test[J]. Advances in Aeronautical Science and Engineering, 2024, 15(6): 77-85 (in Chinese). | |
11 | 张新榃, 于航, 彭俊毅, 等. 氢能源民用飞机技术路线与总体概念设计方法研究[J]. 推进技术, 2024, 45(3): 58-64. |
ZHANG X T, YU H, PENG J Y, et al. Technical route research and concept design of hydrogen aircraft[J]. Journal of Propulsion Technology, 2024, 45(3): 58-64 (in Chinese). | |
12 | 王菡, 沈永强, 向纪鑫, 等. 长航时氢能源混合动力无人机构型设计与气动分析[J]. 太原理工大学学报, 2022, 53(4): 751-758. |
WANG H, SHEN Y Q, XIANG J X, et al. Configuration design and aerodynamic analysis of long-endurance hydrogen energy hybrid powered unmanned aerial vehicle[J]. Journal of Taiyuan University of Technology, 2022, 53(4): 751-758 (in Chinese). | |
13 | BREWER G D. Aviation usage of liquid hydrogen fuel: Prospects and problems[J]. International Journal of Hydrogen Energy, 1976, 1(1): 65-88. |
14 | HAGLIND F, HASSELROT A, SINGH R. Potential of reducing the environmental impact of aviation by using hydrogen PartⅠ: Background, prospects and challenges[J]. The Aeronautical Journal, 2006, 110(1110): 533-540. |
15 | SILVERSTEIN A, HALL E W. Liquid hydrogen as a jet fuel for high-altitude aircraft: NACA-RM-E55C28a [R]. Washington, D.C.: NACA, 1955. |
16 | SOSOUNOV V, ORLOV V. Experimental turbofan using liquid hydrogen and liquid natural gas as fuel[C]∥ 26th Joint Propulsion Conference. Reston: AIAA, 1990. |
17 | KLUG H G, FAASS R. CRYOPLANE: hydrogen fuelled aircraft: Status and challenges[J]. Air & Space Europe, 2001, 3(3-4): 252-254. |
18 | POHL H W, MALYCHEV V V. Hydrogen in future civil aviation[J]. International Journal of Hydrogen Energy, 1997, 22(10-11): 1061-1069. |
19 | SEECKT K, HEINZE W, SCHOLZ D, et al. Hydrogen powered freighter aircraft-The final results of the Green Freighter Project[C]∥27th Congress of the International Council of the Aeronautical Sciences, 2010. |
20 | SEECKT K, SCHOLZ D. Jet versus prop, hydrogen versus kerosene for a regional freighter aircraft[C]∥Ger-man Aerospace Congress 2009, 2009. |
21 | RICHARDSON T. Phantom eye-accelerated air vehicle structural development thru prototyping[C]∥53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2012. |
22 | MILLS G L, BUCHHOLTZ B, OLSEN A. Design, fabrication and testing of a liquid hydrogen fuel tank for a long duration aircraft[J]. AIP Conference Proceedings, 2012, 1434(1): 773-780. |
23 | LAPE?A-REY N, BLANCO J A, FERREYRA E, et al. A fuel cell powered unmanned aerial vehicle for low altitude surveillance missions[J]. International Journal of Hydrogen Energy, 2017, 42(10): 6926-6940. |
24 | BRADLEY T, MOFFITT B, PAREKH D, et al. Flight test results for a fuel cell unmanned aerial vehicle[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
25 | DUTCZAK J. Compressed hydrogen storage in contemporary fuel cell propulsion systems of small drones[J]. IOP Conference Series: Materials Science and Engineering, 2018, 421: 042013. |
26 | DUTCZAK J. Liquefied and chemical hydrogen storage in contemporary small drones’ fuel cell propulsion systems[J]. IOP Conference Series: Materials Science and Engineering, 2018, 421: 042015. |
27 | SWIDER-LYONS K, MACKRELL J A, RODGERS A, et al. Hydrogen fuel cell propulsion for long endurance small UAVs[C]∥AIAA Centennial of Naval Aviation Forum. Reston: AIAA, 2011. |
28 | 许震宇. 同济主持研制首架纯燃料电池无人机试飞成功[EB/OL]. (2012-12-19) [2024-11-30]. . |
XU Z Y. The development of the first fuel cell powered UAV test success by Tongji. (2012-12-19) [2024-11-30]. (in Chinese). | |
29 | 刘莉, 曹潇, 张晓辉, 等. 轻小型太阳能/氢能无人机发展综述[J]. 航空学报, 2020, 41(3): 623474. |
LIU L, CAO X, ZHANG X H, et al. Review of development of light and small scale solar/hydrogen powered unmanned aerial vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623474 (in Chinese). | |
30 | 刘倩. 燃料电池无人机电堆控制系统研究[D]. 北京: 北京理工大学, 2019. |
LIU Q. Research on fuel cell stack control system of fuel cell power UAVs[D]. Beijing: Beijing Institute of Technology, 2019 (in Chinese). | |
31 | 戴月领. 基于模型预测的燃料电池无人机能源管理策略研究[D]. 北京: 北京理工大学, 2019. |
DAI Y L. Research on energy management strategy of fuel cell UAV based on model prediction[D]. Beijing: Beijing Institute of Technology, 2019 (in Chinese). | |
32 | 邓景辉. 电动垂直起降飞行器的技术现状与发展[J]. 航空学报, 2024, 45(5): 529937. |
DENG J H. Technical status and development of electric vertical take-off and landing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529937 (in Chinese). | |
33 | “天目山一号”全球首款百公里级氢动力长航程多旋翼无人机首飞成功[EB/OL]. (2024-8-26) [2024-11-30]. . |
The world’s first hydrogen-powered multi-rotor UAV with a 100-kilometer range, “Tianmushan No.1,” successfully completed its maiden flight [EB/OL]. (2024-8-26) [2024-11-30]. (in Chinese). | |
34 | DUCARD G J J, ALLENSPACH M. Review of designs and flight control techniques of hybrid and convertible VTOL UAVs[J]. Aerospace Science and Technology, 2021, 118: 107035. |
35 | DE WAGTER C, REMES B, SMEUR E, et al. The NederDrone: A hybrid lift, hybrid energy hydrogen UAV[J]. International Journal of Hydrogen Energy, 2021, 46(29): 16003-16018. |
36 | ADLER E J, MARTINS J R R A. Blended wing body configuration for hydrogen-powered aviation[J]. Journal of Aircraft, 2024, 61(3): 887-901. |
37 | QIN N, VAVALLE A, LE MOIGNE A, et al. Aerodynamic considerations of blended wing body aircraft[J]. Progress in Aerospace Sciences, 2004, 40(6): 321-343. |
38 | OKONKWO P, SMITH H. Review of evolving trends in blended wing body aircraft design[J]. Progress in Aerospace Sciences, 2016, 82: 1-23. |
39 | PANAGIOTOU P, YAKINTHOS K. Parametric aerodynamic study of blended-wing-body platforms at low subsonic speeds for UAV applications[C]∥35th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2017. |
40 | PANAGIOTOU P, FOTIADIS-KARRAS S, YAKINTHOS K. Conceptual design of a blended wing body MALE UAV[J]. Aerospace Science and Technology, 2018, 73: 32-47. |
41 | 蒋瑾, 钟伯文, 符松. 翼身融合布局飞机总体参数对气动性能的影响[J]. 航空学报, 2016, 37(1): 278-289. |
JIANG J, ZHONG B W, FU S. Influence of overall configuration parameters on aerodynamic characteristics of a blended-wing-body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 278-289 (in Chinese). | |
42 | ALSAHLANI A A, JOHNSTON L J, ATCLIFFE P A. Design of a high altitude long endurance flying-wing solar-powered unmanned air vehicle[J]. EUCASS Proceedings Series, 2017, 9: 3-24. |
43 | 柴啸, 陈迎春, 谭兆光, 等. 翼身融合布局客机总体参数分析与优化[J]. 航空学报, 2019, 40(9): 623042. |
CHAI X, CHEN Y C, TAN Z G, et al. Analysis and optimization of overall parameters for blended-wing-body civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623042 (in Chinese). | |
44 | PARVIZ M Z, MOHSEN S. An efficient aerodynamic shape optimization of blended wing body UAV using multi-fidelity models[J]. Chinese Journal of Aeronautics, 2018, 31(6): 1165-1180. |
45 | HE C, ZHAN F J, MA L C, et al. Aero-structural design of joined-wing aircraft based on high-fidelity model[J]. Chinese Journal of Aeronautics, 2024, 37(4): 363-377. |
46 | MI B G. Aerodynamics evaluation and flight test of a vertical take-off and landing fixed-wing UAV with joined-wing configuration in transition flight state[J]. Aerospace Science and Technology, 2024, 155: 109759. |
47 | TEUNISSE N, DEMASI L, TISO P, et al. Reduced basis methods for structurally nonlinear joined wings[J]. Aerospace Science and Technology, 2017, 68: 486-495. |
48 | FRIEDMANN F, RIENECKER H, DEXL F, et al. Design studies for a light aircraft wing with highly integrated load-bearing hydrogen tanks using multi-objective optimization methods[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2023, 237(15): 3369-3381. |
49 | DEXL F, HAUFFE A, MARKMILLER J. Multi-objective optimization of airfoils with integral tubular high-pressure tanks for hydrogen storage[J]. Aerospace Science and Technology, 2024, 155: 109647. |
50 | VAN HEERDEN A S J, JUDT D M, JAFARI S, et al. Aircraft thermal management: Practices, technology, system architectures, future challenges, and opportunities[J]. Progress in Aerospace Sciences, 2022, 128: 100767. |
51 | 马菁, 马强, 王俊杰, 等. 温度和阴极湿度对质子交换膜燃料电池的影响[J]. 西北工业大学学报, 2023, 41(6): 1162-1169. |
MA J, MA Q, WANG J J, et al. Effects of temperature and cathode humidity on performance of PEM full cell[J]. Journal of Northwestern Polytechnical University, 2023, 41(6): 1162-1169 (in Chinese). | |
52 | PAL D, SEVERSON M. Liquid cooled system for aircraft power electronics cooling[C]∥2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). Piscataway: IEEE Press, 2017: 800-805. |
53 | AFFONSO W JR, GANDOLFI R, DOS REIS R J N, et al. Thermal management challenges for HEA-FUTPRINT 50[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1024(1): 012075. |
54 | SCHILTGEN B T, FREEMAN J. Aeropropulsive interaction and thermal system integration within the ECO-150: A turboelectric distributed propulsion airliner with conventional electric machines[C]∥16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016. |
55 | WANG T K, BRITCHER C, MARTIN P B. Surface heat exchangers for aircraft applications-A technical review and historical survey[C]∥37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999. |
56 | KALLATH H, KHOLI F K, HA M Y, et al. Computational study on the aerodynamics of a surface-heated wing for thermal management[J]. AIAA Journal, 2020, 58(10): 4339-4356. |
57 | COUTINHO M, BENTO D, SOUZA A, et al. A review on the recent developments in thermal management systems for hybrid-electric aircraft[J]. Applied Thermal Engineering, 2023, 227: 120427. |
58 | FU T W, WANG W Z, FANG G Y. Thermal properties and applications of form-stable phase change materials for thermal energy storage and thermal management: A review[J]. Energy Storage, 2024, 6(1): e533. |
59 | KIM T Y, HYUN B S, LEE J J, et al. Numerical study of the spacecraft thermal control hardware combining solid-liquid phase change material and a heat pipe[J]. Aerospace Science and Technology, 2013, 27(1): 10-16. |
60 | ZHENG X L, YANG D J, TAO K, et al. Design of forced air-cooling structure for elevated temperature PEMFC[J]. World Electric Vehicle Journal, 2010, 4(3): 464-469. |
61 | XU Y F, ZHANG H Y, XU X B, et al. Numerical analysis and surrogate model optimization of air-cooled battery modules using double-layer heat spreading plates[J]. International Journal of Heat and Mass Transfer, 2021, 176: 121380. |
62 | LEE N, GHASEMI M, KIM B, et al. Improving water management and performance of an air-cooled fuel cell system using pressurized air for aviation applications[J]. Journal of the Electrochemical Society, 2021, 168(8): 084503. |
63 | ENDER ?, TOLJ I, BARBIR F. Designing heat exchanger with spatially variable surface area for passive cooling of PEM fuel cell[J]. Applied Thermal Engineering, 2013, 51(1-2): 1339-1344. |
64 | SAKANOVA A, TONG C F, NAWAWI A, et al. Investigation on weight consideration of liquid coolant system for power electronics converter in future aircraft[J]. Applied Thermal Engineering, 2016, 104: 603-615. |
65 | WANG H, WANG Z L, QU Z G, et al. Deep-learning accelerating topology optimization of three-dimensional coolant channels for flow and heat transfer in a proton exchange membrane fuel cell?[J]. Applied Energy, 2023, 352: 121889. |
66 | WANG Y, XU Z H, WANG H, et al. Enhancing aerodynamic performance by waste heat in a hydrogen fuel cell powered aircraft[J]. Applied Thermal Engineering, 2024, 254: 123873. |
67 | DE VITA A, MAHESHWARI A, DESTRO M, et al. Transient thermal analysis of a lithium-ion battery pack comparing different cooling solutions for automotive applications[J]. Applied Energy, 2017, 206: 101-112. |
68 | MUTYALA M S K, ZHAO J Z, LI J Y, et al. In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples[J]. Journal of Power Sources, 2014, 260: 43-49. |
69 | WANG S B, WANG H, CHANG M, et al. A novel battery thermal management system for an unmanned aerial vehicle using the graphene directional heat transfer structure[J]. Journal of Power Sources, 2023, 588: 233726. |
70 | SHANG Z Z, QI H Z, LIU X T, et al. Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system[J]. International Journal of Heat and Mass Transfer, 2019, 130: 33-41. |
71 | ZHAO C R, CLARKE M, KELLERMANN H, et al. Liquid cooling systems for batteries of electric vertical takeoff and landing aircraft[J]. Journal of Aircraft, 2024, 61(3): 667-683. |
72 | ZHOU R, CHEN Y M, ZHANG J W, et al. Research progress in liquid cooling technologies to enhance the thermal management of LIBs[J]. Materials Advances, 2023, 4(18): 4011-4040. |
73 | JANSEN R H, BOWMAN C, JANKOVSKY A, et al. Overview of NASA electrified aircraft propulsion research for large subsonic transports[C]∥53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2017. |
74 | WANG Q S, WU Y, NIU S X, et al. Advances in thermal management technologies of electrical machines[J]. Energies, 2022, 15(9): 3249. |
75 | ADLER E J, MARTINS J R R A. Hydrogen-powered aircraft: Fundamental concepts, key technologies, and environmental impacts[J]. Progress in Aerospace Sciences, 2023, 141: 100922. |
76 | ZHOU W, WANG J, PAN Z B, et al. Review on optimization design, failure analysis and non-destructive testing of composite hydrogen storage vessel[J]. International Journal of Hydrogen Energy, 2022, 47(91): 38862-38883. |
77 | LIN D T W, HSIEH J C, CHINDAKHAM N, et al. Optimal design of a composite laminate hydrogen storage vessel[J]. International Journal of Energy Research, 2013, 37(7): 761-768. |
78 | NGUYEN B N, ROH H S, MERKEL D R, et al. A predictive modeling tool for damage analysis and design of hydrogen storage composite pressure vessels[J]. International Journal of Hydrogen Energy, 2021, 46(39): 20573-20585. |
79 | NEBE M, ASIJEE T J, BRAUN C, et al. Experimental and analytical analysis on the stacking sequence of composite pressure vessels[J]. Composite Structures, 2020, 247: 112429. |
80 | LASN K, MULELID M. The effect of processing on the microstructure of hoop-wound composite cylinders[J]. Journal of Composite Materials, 2020, 54(26): 3981-3997. |
81 | LIU C, SHI Y Y. Design optimization for filament wound cylindrical composite internal pressure vessels considering process-induced residual stresses[J]. Composite Structures, 2020, 235: 111755. |
82 | SHARIFI S, GOHERY S, SHARIFITESHNIZI M, et al. Fracture of laminated woven GFRP composite pressure vessels under combined low-velocity impact and internal pressure[J]. Archives of Civil and Mechanical Engineering, 2018, 18(4): 1715-1728. |
83 | HUANG Z H, MA W S, JIA C H, et al. Gradient design of tubular of the fiber-reinforced composites pressure vessel for diminishing of the edge effect[J]. International Journal of Pressure Vessels and Piping, 2021, 192: 104398. |
84 | ZHOU J, CHEN J Q, ZHENG Y C, et al. Dome shape optimization of filament-wound composite pressure vessels based on hyperelliptic functions considering both geodesic and non-geodesic winding patterns[J]. Journal of Composite Materials, 2017, 51(14): 1961-1969. |
85 | LI F D, CHEN X D, XU P, et al. Optimal design of thin-layered composites for type IV vessels: Finite element analysis enhanced by ANN[J]. Thin-Walled Structures, 2023, 187: 110752. |
86 | SOUTIS C. Fibre reinforced composites in aircraft construction[J]. Progress in Aerospace Sciences, 2005, 41(2): 143-151. |
87 | MEDDAIKAR Y M, DILLINGER J K, SODJA J, et al. Optimization, manufacturing and testing of a composite wing with maximized tip deflection[C]∥57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2016. |
88 | KILIMTZIDIS S, KOTZAKOLIOS A, KOSTOPOULOS V. Efficient structural optimisation of composite materials aircraft wings[J]. Composite Structures, 2023, 303: 116268. |
89 | HOSSEIN MODARESS-AVAL A, BAKHTIARI-NEJAD F, DOWELL E H, et al. Comparative study of beam and plate theories for moderate aspect ratio wings[J]. AIAA Journal, 2023, 61(2): 859-874. |
90 | MITROTTA F M A, RAJPAL D, SODJA J, et al. Multi-fidelity design of an aeroelastically tailored composite wing for dynamic wind-tunnel testing[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
91 | AHMADI M, FARSADI T, HADDAD KHODAPARAST H. Enhancing gust load alleviation performance in an optimized composite wing using passive wingtip devices: Folding and Twist approaches[J]. Aerospace Science and Technology, 2024, 147: 109023. |
92 | AHMADI M, FARSADI T. Multidisciplinary optimization of high aspect ratio composite wings with geometrical nonlinearity and aeroelastic tailoring[J]. Aerospace Science and Technology, 2024, 145: 108849. |
93 | BENAOUALI A, KACHEL S. Multidisciplinary design optimization of aircraft wing using commercial software integration[J]. Aerospace Science and Technology, 2019, 92: 766-776. |
94 | RAJPAL D, MITROTTA F M A, SOCCI C A, et al. Design and testing of aeroelastically tailored composite wing under fatigue and gust loading including effect of fatigue on aeroelastic performance[J]. Composite Structures, 2021, 275: 114373. |
95 | 朱炳杰, 杨希祥, 宗建安, 等. 分布式混合电推进飞行器技术[J]. 航空学报, 2022, 43(7): 025556. |
ZHU B J, YANG X X, ZONG J A, et al. Review of distributed hybrid electric propulsion aircraft technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 025556 (in Chinese). | |
96 | B?HNISCH N, BRAUN C, KOSCHEL S, et al. Whirl flutter for distributed propulsion systems on a flexible wing[C]∥AIAA Scitech 2022 Forum; San Diego, California. Reston: AIAA, 2022. |
97 | NGUYEN N T, REYNOLDS K, TING E, et al. Distributed propulsion aircraft with aeroelastic wing shaping control for improved aerodynamic efficiency[J]. Journal of Aircraft, 2018, 55(3): 1122-1140. |
98 | ASADI D, FARSADI T, KAYRAN A. Flutter optimization of a wing-engine system with passive and active control approaches[J]. AIAA Journal, 2020, 59(4): 1422-1440. |
99 | XIN Z Q, CHEN Z L, GU W T, et al. Nacelle-airframe integration design method for blended-wing-body transport with podded engines[J]. Chinese Journal of Aeronautics, 2019, 32(8): 1860-1868. |
100 | HE C, CHEN G, SUN X, et al. Geometrically compatible integrated design method for conformal rotor and nacelle of distributed propulsion tilt-wing UAV[J]. Chinese Journal of Aeronautics, 2023, 36(10): 229-245. |
101 | 刘湘宁, 向锦武. 大展弦比复合材料机翼的非线性颤振分析[J]. 航空学报, 2006, 27(2): 213-218. |
LIU X N, XIANG J W. Study of nonlinear flutter of high-aspect-ratio composite wing[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(2): 213-218 (in Chinese). | |
102 | SU W H, CESNIK C E S. Dynamic response of highly flexible flying wings[J]. AIAA Journal, 2011, 49(2): 324-339. |
103 | SU W H, CESNIK C E S. Nonlinear aeroelasticity of a very flexible blended-wing-body aircraft[J]. Journal of Aircraft, 2010, 47(5): 1539-1553. |
104 | CESNIK C, BROWN E. Modeling of high aspect ratio active flexible wings for roll control[C]∥43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2002. |
105 | CESNIK C, BROWN E. Active warping control of a joined wing/tail airplane configuration[C]∥44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003. |
106 | BROWN E L. Integrated strain actuation in aircraft with highly flexible composite wings[D]. Cambridge, MA: Massachusetts Institute of Technology, 2003. |
107 | TANG D M, GRASCH A, DOWELL E H. Gust response for flexibly suspended high-aspect ratio wings[J]. AIAA Journal, 2010, 48(10): 2430-2444. |
108 | PATIL M J, HODGES D H, CESNIK C E S. Nonlinear aeroelastic analysis of complete aircraft in subsonic flow[J]. Journal of Aircraft, 2000, 37(5): 753-760. |
109 | PATIL M. Limit cycle oscillations of aircraft due to flutter-induced drag?[C]∥43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2002. |
110 | PATIL M J, HODGES D H. Output feedback control of the nonlinear aeroelastic response of a slender wing[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(2): 302-308. |
111 | MAREK C, SMITH T, KUNDU K. Low emission hydrogen combustors for gas turbines using lean direct injection[C]∥41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2005. |
112 | 巨翃宇, 梁红侠, 索建秦, 等. 某航改燃机氢燃料燃烧室污染排放特性研究[J]. 推进技术, 2024, 45(3): 199-211. |
JU H Y, LIANG H X, SUO J Q, et al. Pollution emission characteristics of hydrogen-fueled combustor of an aero-engine conversion gas turbine[J]. Journal of Propulsion Technology, 2024, 45(3): 199-211 (in Chinese). | |
113 | REICHEL T G, TERHAAR S, PASCHEREIT C O. Flashback resistance and fuel-air mixing in lean premixed hydrogen combustion[J]. Journal of Propulsion and Power, 2017, 34(3): 690-701. |
114 | FUNKE H H, BECKMANN N, ABANTERIBA S. An overview on dry low NO x micromix combustor development for hydrogen-rich gas turbine applications[J]. International Journal of Hydrogen Energy, 2019, 44(13): 6978-6990. |
115 | DAHL G, SUTTROP F. Engine control and low-NO x combustion for hydrogen fuelled aircraft gas turbines[J]. International Journal of Hydrogen Energy, 1998, 23(8): 695-704. |
116 | ABDELHAFEZ A, ABDELHALIM A, ABDUL-RAHMAN G A Q, et al. Stability, near flashback combustion dynamics, and NO x emissions of H2/N2/air flames in a micromixer-based model gas turbine combustor[J]. International Journal of Hydrogen Energy, 2024, 61: 102-112. |
117 | RENAU J, LOZANO A, BARROSO J, et al. Use of fuel cell stacks to achieve high altitudes in light unmanned aerial vehicles[J]. International Journal of Hydrogen Energy, 2015, 40(42): 14573-14583. |
118 | BAYRAK Z U, KAYA U, OKSUZTEPE E. Investigation of PEMFC performance for cruising hybrid powered fixed-wing electric UAV in different temperatures[J]. International Journal of Hydrogen Energy, 2020, 45(11): 7036-7045. |
119 | 张晓辉, 刘莉, 戴月领, 等. 燃料电池无人机动力系统方案设计与试验[J]. 航空学报, 2018, 39(8): 221874. |
ZHANG X H, LIU L, DAI Y L, et al. Design and test of propulsion system for fuel cell powered UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 221874 (in Chinese). | |
120 | TOGHYANI S, BANIASADI E, AFSHARI E. Performance analysis and comparative study of an anodic recirculation system based on electrochemical pump in proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2018, 43(42): 19691-19703. |
121 | STEINBERGER M, GEILING J, OECHSNER R, et al. Anode recirculation and purge strategies for PEM fuel cell operation with diluted hydrogen feed gas[J]. Applied Energy, 2018, 232: 572-582. |
122 | 邓期昊, 颜俊明, 陈奔. 基于氢气再循环的PEMFC阳极系统运行特性研究[J/OL]. 航空学报, (2024-10-24)[2024-11-30]. . |
DENG Q H, YAN J M, CHEN B. Study on operation characteristics of PEMFC anode system based on hydrogen recirculation[J/OL]. Acta Aeronautica et Astronautica Sinica, (2024-10-24)[2024-11-30]. (in Chinese). | |
123 | ZHANG Y, LI F Q, HU X, et al. Fuel cell air supply system control based on oxygen excess ratio[C]∥IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE Press, 2019: 6394-6397. |
124 | BAROUD Z, BENMILOUD M, BENALIA A, et al. Novel hybrid fuzzy-PID control scheme for air supply in PEM fuel-cell-based systems[J]. International Journal of Hydrogen Energy, 2017, 42(15): 10435-10447. |
125 | GRUBER J K, DOLL M, BORDONS C. Design and experimental validation of a constrained MPC for the air feed of a fuel cell[J]. Control Engineering Practice, 2009, 17(8): 874-885. |
126 | 赵冬冬, 赵国胜, 夏磊, 等. 无人机用燃料电池阴极供气系统建模与控制[J]. 航空学报, 2021, 42(7): 324659. |
ZHAO D D, ZHAO G S, XIA L, et al. Modeling and control of fuel cell cathode gas supply system for UAV[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 324659 (in Chinese). | |
127 | YANG X B, PEI X. 15 Hybrid system for powering unmanned aerial vehicles: Demonstration and study cases[J]. Hybrid Technologies for Power Generation, 2022: 439-473. |
128 | VAMSI KRISHNA G, NARAYANAMURTHY V, VISWANATH C. Modeling the buckling characteristics of the metal-FRP hybrid cylinder[J]. Composite Structures, 2020, 250: 112505. |
129 | MIAN H H, WANG G, DAR U A, et al. Optimization of composite material system and lay-up to achieve minimum weight pressure vessel[J]. Applied Composite Materials, 2013, 20(5): 873-889. |
130 | GENG P, XING J Z, WANG Q Z. Analytical model for stress and deformation of multiple-winding-angle filament-wound composite pipes/vessels under multiple combined loads[J]. Applied Mathematical Modelling, 2021, 94: 576-596. |
131 | JIANG W L, DU F M, DRECHSLER K, et al. Combined composites layup architecture and mechanical evaluation of type Ⅳ pressure vessels: A novel analytical approach[J]. International Journal of Hydrogen Energy, 2023, 48(46): 17565-17576. |
132 | WANG Q F, QIN H S, JIA L Y, et al. Failure prediction and optimization for composite pressure vessel combining FEM simulation and machine learning approach[J]. Composite Structures, 2024, 337: 118099. |
133 | QARSSIS Y, NACHTANE M, KARINE A, et al. Machine learning-based analytical approach for mechanical analysis of composite hydrogen storage tanks under internal pressure[J]. International Journal of Hydrogen Energy, 2024, 89: 1440-1453. |
134 | XU W Q, LI Q Q, HUANG M J. Design and analysis of liquid hydrogen storage tank for high-altitude long-endurance remotely-operated aircraft[J]. International Journal of Hydrogen Energy, 2015, 40(46): 16578-16586. |
135 | YIN L, YANG H N, JU Y L. Review on the key technologies and future development of insulation structure for liquid hydrogen storage tanks[J]. International Journal of Hydrogen Energy, 2024, 57: 1302-1315. |
136 | WANG Z H, MéRIDA W. Thermal performance of cylindrical and spherical liquid hydrogen tanks[J]. International Journal of Hydrogen Energy, 2024, 53: 667-683. |
137 | KUMAR S P, PRASAD B V S S S, VENKATARATHNAM G, et al. Influence of surface evaporation on stratification in liquid hydrogen tanks of different aspect ratios[J]. International Journal of Hydrogen Energy, 2007, 32(12): 1954-1960. |
138 | LI J C, LIANG G Z, ZHU P P, et al. Numerical investigation of the operating process of the liquid hydrogen tank under gaseous hydrogen pressurization[J]. Aerospace Science and Technology, 2019, 93: 105327. |
139 | LIU Z, FENG Y Y, LEI G, et al. Fluid thermal stratification in a non-isothermal liquid hydrogen tank under sloshing excitation[J]. International Journal of Hydrogen Energy, 2018, 43(50): 22622-22635. |
140 | FARAZMAND M, SAADAT Z, SAMETI M. Above-ground hydrogen storage: A state-of-the-art review[J]. International Journal of Hydrogen Energy, 2024, 90: 1173-1205. |
141 | KIM K, KIM T, LEE K, et al. Fuel cell system with sodium borohydride as hydrogen source for unmanned aerial vehicles[J]. Journal of Power Sources, 2011, 196(21): 9069-9075. |
142 | SEO J E, KIM Y, KIM Y, et al. Portable ammonia-borane-based H2 power-pack for unmanned aerial vehicles[J]. Journal of Power Sources, 2014, 254: 329-337. |
143 | GONG A, VERSTRAETE D. Fuel cell propulsion in small fixed-wing unmanned aerial vehicles: Current status and research needs[J]. International Journal of Hydrogen Energy, 2017, 42(33): 21311-21333. |
144 | NJOYA MOTAPON S, DESSAINT L A, AL-HADDAD K. A comparative study of energy management schemes for a fuel-cell hybrid emergency power system of more-electric aircraft[J]. IEEE Transactions on Industrial Electronics, 2014, 61(3): 1320-1334. |
145 | USTOLIN F, TACCANI R. Fuel cells for airborne usage: Energy storage comparison[J]. International Journal of Hydrogen Energy, 2018, 43(26): 11853-11861. |
146 | BOUKOBERINE M N, ZIA M F, BENBOUZID M, et al. Hybrid fuel cell powered drones energy management strategy improvement and hydrogen saving using real flight test data[J]. Energy Conversion and Management, 2021, 236: 113987. |
147 | ZHANG X H, LIU L, XU G T. Energy management strategy of hybrid PEMFC-PV-battery propulsion system for low altitude UAVs[C]∥52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2016. |
148 | ZHANG X H, LIU L, DAI Y L, et al. Experimental investigation on the online fuzzy energy management of hybrid fuel cell/battery power system for UAVs[J]. International Journal of Hydrogen Energy, 2018, 43(21): 10094-10103. |
149 | BRADLEY T H. Modeling, design and energy management of fuel cell systems for aircraft[M]. Georgia Institute of Technology, 2008. |
150 | 戴月领, 刘莉, 张晓辉. 燃料电池无人机动力系统半实物仿真[J]. 北京航空航天大学学报, 2020, 46(2): 439-446. |
DAI Y L, LIU L, ZHANG X H. Hardware-in-the-loop simulation of fuel cell UAV power system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 439-446 (in Chinese). | |
151 | KARUNARATHNE L, ECONOMOU J T, KNOWLES K. Model based power and energy management system for PEM fuel cell/Li-Ion battery driven propulsion system[C]∥5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010). London: IET, 2010. |
152 | KARUNARATHNE L, ECONOMOU J T, KNOWLES K. Intelligent power management (IPM) for transient recognition and control of PEM fuel cell/battery hybrid system[C]∥2009 IEEE Vehicle Power and Propulsion Conference. Piscataway: IEEE Press, 2009: 992-997. |
153 | TIAN W Y, LIU L, ZHANG X H, et al. Adaptive hierarchical energy management strategy for fuel cell/battery hybrid electric UAVs[J]. Aerospace Science and Technology, 2024, 146: 108938. |
154 | HE L L, CHEN F, TIAN P D, et al. An improved energy management strategy for hybrid electric powered aircraft based on deep reinforcement learning[J]. Aerospace Science and Technology, 2024, 149: 109137. |
155 | 贾高伟, 王建峰. 无人机集群任务规划方法研究综述[J]. 系统工程与电子技术, 2021, 43(1): 99-111. |
JIA G W, WANG J F. Research review of UAV swarm mission planning method[J]. Systems Engineering and Electronics, 2021, 43(1): 99-111 (in Chinese). | |
156 | DOBROKHODOV V, JONES K D, WALTON C, et al. Energy-optimal trajectory planning of hybrid ultra-long endurance UAV in time-varying energy fields[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
157 | TIAN W Y, LIU L, ZHANG X H, et al. Flight trajectory and energy management coupled optimization for hybrid electric UAVs with adaptive sequential convex programming method[J]. Applied Energy, 2024, 364: 123166. |
158 | QUAN S, HUANGFU Y G, TIAN C Y, et al. Comparative of energy management strategies for fuel cell UAV based on a new hybrid power system topology[C]∥2022 IEEE Industry Applications Society Annual Meeting (IAS). Piscataway: IEEE Press, 2022. |
159 | BOUKOBERINE M N, DONATEO T, BENBOUZID M. Optimized energy management strategy for hybrid fuel cell powered drones in persistent missions using real flight test data[J]. IEEE Transactions on Energy Conversion, 2022, 37(3): 2080-2091. |
160 | TIAN W Y, LIU L, ZHANG X H, et al. Double-layer fuzzy adaptive NMPC coordinated control method of energy management and trajectory tracking for hybrid electric fixed wing UAVs[J]. International Journal of Hydrogen Energy, 2022, 47(92): 39239-39254. |
/
〈 |
|
〉 |