ACTA AERONAUTICAET ASTRONAUTICA SINICA >
New progress in cluster collaborative detection and guidance based on bi/multi-static SAR
Received date: 2024-11-19
Revised date: 2024-12-09
Accepted date: 2024-12-31
Online published: 2025-01-07
Supported by
National Natural Science Foundation of China(62141604);National Key R&D Program of China(2022YFB3305600)
In complex environments such as high dynamics, strong confrontation, and limited resources, the collaborative detection and guidance technologies of cluster combat systems face severe challenges. The collaborative detection and guidance technologies based on bi/multi-static Synthetic Aperture Radar (SAR) can achieve passive forward looking high-resolution wide-range imaging, multi-view information fusion enhancement, and multi-directional collaborative strike, and is thus an effective solution to the problems of highly reliable collaborative detection and guidance of clusters and completion of the closed-loop of Observation-Orientation-Decision-Action (OODA) loop in complex environments in the future. In recent years, with the advancement of bi/multi-static SAR technology, there has been significant development in the research on using bi/multi-static SAR in collaborative detection and guidance. This paper aims to review the research progress of bi/multi-static SAR in cluster collaborative detection and guidance. Firstly, the mechanism and typical working modes of collaborative detection and guidance based on bi/multi-static SAR are reviewed, and the technical requirements for the two core key tasks of collaborative detection and guidance based on bi/multi-static SAR in complex environments are sorted out. Furthermore, the key technologies and their progress involved in collaborative detection and guidance based on bi/multi-static SAR in complex environments are introduced, and the bottlenecks and challenges of collaborative detection and guidance technology based on the bi/multi-static SAR are analyzed. Finally, considering the challenges such as intelligentization and anti-interference, the future development trend of cluster collaborative detection and guidance technology based on bi/multi-static SAR is also discussed.
Jinhu Lü , Zongfu WANG , Kexin LIU , Jianglong YU , Deyuan LIU . New progress in cluster collaborative detection and guidance based on bi/multi-static SAR[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(6) : 531548 -531548 . DOI: 10.7527/S1000-6893.2024.31548
1 | LIU D W, SUN J, HUANG D G, et al. Research on development status and technology trend of intelligent autonomous ammunition?[J]. Journal of Physics: Conference Series, 2021, 1721(1): 012032. |
2 | MEI J Z, YE M A, CHANG T. Multi-agent unmanned swarm combat architecture based on OODA loop[J]. Advances in Computer, Signals and Systems, 2021, 5(1): 81-87. |
3 | 唐杨, 祝小平, 周洲, 等. 一种基于攻击时间和角度控制的协同制导方法[J]. 航空学报, 2022, 43(1): 324844. |
TANG Y, ZHU X P, ZHOU Z, et al. Cooperative guidance method based on impact time and angle control[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 324844 (in Chinese). | |
4 | 沈博, 武文亮, 杨刚, 等. 基于群体OODA的无人集群系统智能评价模型及方法[J]. 航空学报, 2023, 44(14): 328003. |
SHEN B, WU W L, YANG G, et al. Evaluation models and methods for intelligence of unmanned swarm systems based on collective OODA loop[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 328003 (in Chinese). | |
5 | 李国飞, 朱国梁, 吕金虎, 等. 主-从多飞行器三维分布式协同制导方法[J]. 航空学报, 2021, 42(11): 524926. |
LI G F, ZHU G L, LYU J H, et al. Three-dimensional distributed cooperative guidance law for multiple leader-follower flight vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524926 (in Chinese). | |
6 | 黎剑兵, 张双喜, 苏大亮, 等. 一种多普勒域走动校正的斜视SAR成像算法[J]. 宇航学报, 2016, 37(1): 118-126. |
LI J B, ZHANG S X, SU D L, et al. A squint SAR imaging algorithm for linear range cell migration correction in Doppler domain[J]. Journal of Astronautics, 2016, 37(1): 118-126 (in Chinese). | |
7 | 汪俊澎, 李永祯, 邢世其, 等. 合成孔径雷达电子干扰技术综述[J]. 信息对抗技术, 2023(S1): 138-150. |
WANG J P, LI Y Z, XING S Q, et al. A review of electronic jamming technology for synthetic aperture radar[J]. Information Countermeasure Technology, 2023(S1): 138-150 (in Chinese). | |
8 | Lü J, CHEN G R. A new chaotic attractor coined[J]. International Journal of Bifurcation and Chaos, 2002, 12(3): 659-661. |
9 | YU W W, CHEN G R, Lü J H. On pinning synchronization of complex dynamical networks?[J]. Automatica, 2009, 45(2): 429-435. |
10 | ZHOU J, LU J N, LU J H. Adaptive synchronization of an uncertain complex dynamical network?[J]. IEEE Transactions on Automatic Control, 2006, 51(4): 652-656. |
11 | 吴付杰, 王博文, 齐静雅, 等. 机载多孔径全景图像合成技术研究进展[J]. 航空学报, 2025: 46(3): 530505. |
WU F J, WANG B W, QI J Y, et al. Research progress of airborne multi-aperture panoramic image synthesis technology[J]. Acta Aeronautica et Astronautica Sinica, 2025: 46(3): 530505 (in Chinese). | |
12 | CARDILLO G P. On the use of the gradient to determine bistatic SAR resolution[C]?∥International Symposium on Antennas and Propagation Society, Merging Technologies for the 90’?s. Piscataway: IEEE Press, 2002: 1032-1035. |
13 | ENDER J H G, WALTERSCHEID I, BRENNER A R. New aspects of bistatic SAR: Processing and experiments[C]∥IGARSS 2004.2004 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2004: 1758-1762. |
14 | KRIEGER G, MOREIRA A, FIEDLER H, et al. TanDEM-X: A satellite formation for high-resolution SAR interferometry?[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3317-3341. |
15 | 武俊杰, 孙稚超, 吕争, 等. 星源照射双/多基地SAR成像[J]. 雷达学报, 2023, 12(1): 13-35. |
WU J J, SUN Z C, LV Z, et al. Bi/multi-static synthetic aperture radar using spaceborne illuminator?[J]. Journal of Radars, 2023, 12(1): 13-35 (in Chinese). | |
16 | WALTERSCHEID I, ENDER J H G, BRENNER A R, et al. Bistatic SAR processing and experiments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2710-2717. |
17 | HUANG Y L, YANG J Y, WU J J, et al. Precise time frequency synchronization technology for bistatic radar[J]. Journal of Systems Engineering and Electronics, 2008, 19(5): 929-933. |
18 | WANG Y K, LIU Y Y, LI Z F, et al. High-resolution wide-swath imaging of spaceborne multichannel bistatic SAR with inclined geosynchronous illuminator[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12): 2380-2384. |
19 | BRENNER A R. Proof of concept for airborne SAR imaging with 5 cm resolution in X-band[C]∥8th European Conference on Synthetic Aperture Radar, 2010: 1-4. |
20 | LIU J, LI P, TU C R, et al. Spatiotemporal change detection of coastal wetlands using multi-band SAR coherence and synergetic classification?[J]. Remote Sensing, 2022, 14(11): 2610. |
21 | 杨建宇. 雷达对地成像技术多向演化趋势与规律分析[J]. 雷达学报, 2019, 8(6): 669-692. |
YANG J Y. Multi-directional evolution trend and law analysis of radar ground imaging technology?[J]. Journal of Radars, 2019, 8(6): 669-692 (in Chinese). | |
22 | DENG H, LI Y C, LIU M Q, et al. A space-variant phase filtering imaging algorithm for missile-borne BiSAR with arbitrary configuration and curved track?[J]. IEEE Sensors Journal, 2018, 18(8): 3311-3326. |
23 | 安道祥, 陈乐平, 冯东, 等. 机载圆周SAR成像技术研究[J]. 雷达学报, 2020, 9(2): 221-242. |
AN D X, CHEN L P, FENG D, et al. Study of the airborne circular synthetic aperture radar imaging technology[J]. Journal of Radars, 2020, 9(2): 221-242 (in Chinese). | |
24 | ZHANG Q L, DONG Z, ZHANG Y S, et al. GEO-UAV bistatic circular synthetic aperture radar: Concepts and technologies[C]?∥2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway: IEEE Press, 2016: 4195-4198. |
25 | DUQUE S, LóPEZ-DEKKER P, MERLANO J C, et al. Bistatic SAR tomography: Processing and experimental results[C]?∥2010 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2010: 154-157. |
26 | ZHANG S X, GAO Y X, XING M D, et al. Ground moving target indication for the geosynchronous-low earth orbit bistatic multichannel SAR system[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 5072-5090. |
27 | AN H Y, WU J J, HE Z W, et al. Geosynchronous spaceborne-airborne multichannel bistatic SAR imaging using weighted fast factorized backprojection method[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(10): 1590-1594. |
28 | 李杭, 梁兴东, 张福博, 等. 基于高斯混合聚类的阵列干涉SAR三维成像[J]. 雷达学报, 2017, 6(6): 630-639. |
LI H, LIANG X D, ZHANG F B, et al. 3D imaging for array InSAR based on Gaussian mixture model clustering[J]. Journal of Radars, 2017, 6(6): 630-639 (in Chinese). | |
29 | WANG R, DENG Y K, ZHANG Z M, et al. Double-channel bistatic SAR system with spaceborne illuminator for 2-D and 3-D SAR remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4496-4507. |
30 | 林玉川, 张剑云, 武拥军, 等. 双基星载HRWS-SAR系统俯仰向DBF处理技术[J]. 电子与信息学报, 2017, 39(10): 2317-2324. |
LIN Y C, ZHANG J Y, WU Y J, et al. Digital beam-forming scheme on elevation for bistatic spaceborne high resolution wide swath SAR[J]. Journal of Electronics & Information Technology, 2017, 39(10): 2317-2324 (in Chinese). | |
31 | 叶恺, 禹卫东, 王伟. 一种双基星载MIMO SAR系统体制与处理方法[J]. 电子与信息学报, 2017, 39(11): 2697-2704. |
YE K, YU W D, WANG W. Investigation on system scheme and processing approach for bistatic spaceborne MIMO SAR?[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2697-2704 (in Chinese). | |
32 | FOCSA A, ANGHEL A, DATCU M. A compressive-sensing approach for opportunistic bistatic SAR imaging enhancement by harnessing sparse multiaperture data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5205914. |
33 | AN H Y, WU J J, TEH K C, et al. Simultaneous moving and stationary target imaging for geosynchronous spaceborne-airborne bistatic SAR based on sparse separation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6722-6735. |
34 | 丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像: 从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693-709. |
DING C B, QIU X L, XU F, et al. Synthetic aperture radar three-dimensional imaging: From TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693-709 (in Chinese). | |
35 | CEN X, SONG X, LI Y C, et al. A deep learning-based super-resolution model for bistatic SAR image[C]∥2021 International Conference on Electronics, Circuits and Information Engineering (ECIE). Piscataway: IEEE Press, 2021: 228-233. |
36 | DAI H, DU L, WANG Y, et al. A modified CFAR algorithm based on object proposals for ship target detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1925-1929. |
37 | AN W T, XIE C H, YUAN X Z. An improved iterative censoring scheme for CFAR ship detection with SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4585-4595. |
38 | AGRAWAL A, MANGALRAJ P, BISHERWAL M A. Target detection in SAR images using SIFT[C]?∥2015 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). Piscataway: IEEE Press, 2015: 90-94. |
39 | KAPLAN L M. Improved SAR target detection via extended fractal features[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 436-451. |
40 | AI J Q, YANG X Z, SONG J T, et al. An adaptively truncated clutter-statistics-based two-parameter CFAR detector in SAR imagery[J]. IEEE Journal of Oceanic Engineering, 2018, 43(1): 267-279. |
41 | LENG X G, JI K F, YANG K, et al. A bilateral CFAR algorithm for ship detection in SAR images?[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1536-1540. |
42 | LENG X G, JI K F, XING X W, et al. Area ratio invariant feature group for ship detection in SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7): 2376-2388. |
43 | LI Y, CHENG M M, PENG X J, et al. Ship detection and recognition combing one-dimensional range profile with SAR image[J]. The Journal of Engineering, 2019, 2019(19): 6252-6254. |
44 | NI J C, LUO Y, WANG D, et al. Saliency-based SAR target detection via convolutional sparse feature enhancement and Bayesian inference[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5202015. |
45 | KANG M, JI K F, LENG X G, et al. Contextual region-based convolutional neural network with multilayer fusion for SAR ship detection[J]. Remote Sensing, 2017, 9(8): 860. |
46 | PEI J F, HUANG Y L, HUO W B, et al. SAR automatic target recognition based on multiview deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2196-2210. |
47 | 杜兰, 王梓霖, 郭昱辰, 等. 结合强化学习自适应候选框挑选的SAR目标检测方法[J]. 雷达学报, 2022, 11(5): 884-896. |
DU L, WANG Z L, GUO Y C, et al. Adaptive region proposal selection for SAR target detection using reinforcement learning[J]. Journal of Radars, 2022, 11(5): 884-896 (in Chinese). | |
48 | ZHOU Z, GUAN R, CUI Z Y, et al. Scale expansion pyramid network for cross-scale object detection in SAR images[C]∥2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. IEEE, 2021: 5291-5294. |
49 | ZHANG T W, ZHANG X L, KE X. Quad-FPN: A novel quad feature pyramid network for SAR ship detection[J]. Remote Sensing, 2021, 13(14): 2771. |
50 | CUI Z Y, LI Q, CAO Z J, et al. Dense attention pyramid networks for multi-scale ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8983-8997. |
51 | 李毅, 杜兰, 杜宇昂. 基于特征分解卷积神经网络的SAR图像目标检测方法[J]. 雷达学报, 2023, 12(5): 1069-1080. |
LI Y, DU L, DU Y A. Convolutional neural network based on feature decomposition for target detection in SAR images[J]. Journal of Radars, 2023, 12(5): 1069-1080 (in Chinese). | |
52 | TAO W, XI C, RUANG X W, et al. Study on SAR target recognition based on support vector machine[C]?∥2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar. Piscataway: IEEE Press, 2009: 856-859. |
53 | LIU K Q, WANG W G, SUN Z W. Recognition of SAR image based on combined templates[C]?∥2013 IEEE International Conference on Imaging Systems and Techniques (IST). Piscataway: IEEE Press, 2013: 284-287. |
54 | LIU H C, LI S T. Decision fusion of sparse representation and support vector machine for SAR image target recognition[J]. Neurocomputing, 2013, 113: 97-104. |
55 | SONG D Y, LIU L, ZHANG X Y, et al. A novel hog-based template matching method for SAR and optical image[C]?∥IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2022: 951-954. |
56 | FU K, DOU F Z, LI H C, et al. Aircraft recognition in SAR images based on scattering structure feature and template matching?[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4206-4217. |
57 | DING J, CHEN B, LIU H W, et al. Convolutional neural network with data augmentation for SAR target recognition?[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 364-368. |
58 | CHEN S Z, WANG H P. SAR target recognition based on deep learning[C]?∥2014 International Conference on Data Science and Advanced Analytics (DSAA). Piscataway: IEEE Press, 2014: 541-547. |
59 | GAO F, HUANG T, WANG J, et al. Combining deep convolutional neural network and SVM to SAR image target recognition[C]?∥2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). Piscataway: IEEE Press, 2017: 1082-1085. |
60 | ZHANG T W, ZHANG X L, KE X, et al. HOG-ShipCLSNet: A novel deep learning network with HOG feature fusion for SAR ship classification?[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5210322. |
61 | ZENG Z Q, SUN J P, HAN Z, et al. SAR automatic target recognition method based on multi-stream complex-valued networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5228618. |
62 | ZHANG J S, XING M D, XIE Y Y. FEC: A feature fusion framework for SAR target recognition based on electromagnetic scattering features and deep CNN features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2174-2187. |
63 | LI Y, DU L. Design of the physically interpretable SAR target recognition network combined with electromagnetic scattering characteristics[C]?∥IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2022: 4988-4991. |
64 | CUI Z Y, TANG C, CAO Z J, et al. SAR unlabeled target recognition based on updating CNN with assistant decision?[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(10): 1585-1589. |
65 | INKAWHICH N A, DAVIS E K, INKAWHICH M J, et al. Training SAR-ATR models for reliable operation in open-world environments?[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3954-3966. |
66 | FU K, ZHANG T F, ZHANG Y, et al. Few-shot SAR target classification via metalearning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 2000314. |
67 | HUANG P H, XIA X G, WANG L Y, et al. Imaging and relocation for extended ground moving targets in multichannel SAR-GMTI systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5214024. |
68 | YANG J, LIU C, WANG Y F. Imaging and parameter estimation of fast-moving targets with single-antenna SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2): 529-533. |
69 | HUANG P H, XIA X G, GAO Y S, et al. Ground moving target refocusing in SAR imagery based on RFRT-FrFT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5476-5492. |
70 | LI R J, GAN D, XIE S Y, et al. Stability and performance analysis of the compressed Kalman filter algorithm for sparse stochastic systems[J]. Science China Technological Sciences, 2024, 67(2): 380-394. |
71 | LI Z Y, WU J J, HUANG Y L, et al. Ground-moving target imaging and velocity estimation based on mismatched compression for bistatic forward-looking SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3277-3291. |
72 | ZHANG S, ZHOU F, SUN G C, et al. A new SAR-GMTI high-accuracy focusing and relocation method using instantaneous interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5564-5577. |
73 | WANG J, LENG X G, SUN Z Z, et al. Fast and accurate refocusing for moving ships in SAR imagery based on FrFT[J]. Remote Sensing, 2023, 15(14): 3656. |
74 | WANG J, LENG X G, SUN Z Z, et al. Refocusing swing ships in SAR imagery based on spatial-variant defocusing property[J]. Remote Sensing, 2023, 15(12): 3159. |
75 | KANG M S, KIM K T. Ground moving target imaging based on compressive sensing framework with single-channel SAR[J]. IEEE Sensors Journal, 2020, 20(3): 1238-1250. |
76 | LI Z Y, WU J J, LI W C, et al. Dual-channel DPCA technique in bistatic forward-looking SAR for moving target detection and imaging[C]?∥Proceedings of 2011 IEEE CIE International Conference on Radar. Piscataway: IEEE Press, 2011: 942-945. |
77 | LI Z Y, WU J J, HUANG Y L, et al. A ground moving target detection and imaging method in Doppler-rate domain for Bistatic forward-looking SAR[C]?∥2014 IEEE Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2014: 2826-2829. |
78 | LI Z Y, WU J J, YI Q Y, et al. Bistatic forward-looking SAR ground moving target detection and imaging?[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1000-1016. |
79 | LI P C, DING Z G, ZHANG T Y, et al. Integrated detection and imaging algorithm for radar sparse targets via CFAR-ADMM?[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5204015. |
80 | LENG X G, JI K F, KUANG G Y. Ship detection from raw SAR echo data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5207811. |
81 | LENG X G, JI K F, ZHOU S L, et al. Discriminating ship from radio frequency interference based on noncircularity and non-gaussianity in sentinel-1 SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1): 352-363. |
82 | JOSHI S K, BAUMGARTNER S V. Training data selection strategy for CFAR ship detection in range-compressed radar data[C]?∥2019 International Radar Conference (RADAR). Piscataway: IEEE Press, 2019: 1-5. |
83 | ZHANG Q H, WU J J, LI C Y, et al. Study of the effects of non-square resolutions of bistatic SAR on template matching performance[C]?∥IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2018: 557-560. |
84 | CURLANDER J C. Location of spaceborne SAR imagery?[J]. IEEE Transactions on Geoscience and Remote Sensing, 1982, GE-20(3): 359-364. |
85 | JIAO N G, WANG F, YOU H J, et al. Geo-positioning accuracy improvement of multi-mode GF-3 satellite SAR imagery based on error sources analysis?[J]. Sensors, 2018, 18(7): 2333. |
86 | ZHOU G, HE C, YUE T, et al. An improved method of AGM for high precision geolocation of SAR images[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, XLII-3: 2479-2485. |
87 | 吴元. 一种基于参数更新的机载SAR图像目标定位方法[J]. 电子与信息学报, 2019, 41(5): 1063-1068. |
WU Y. An airborne SAR image target location algorithm based on parameter refining[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1063-1068 (in Chinese). | |
88 | 丁赤飚, 刘佳音, 雷斌, 等. 高分三号SAR卫星系统级几何定位精度初探[J]. 雷达学报, 2017, 6(1): 11-16. |
DING C B, LIU J Y, LEI B, et al. Preliminary exploration of systematic geolocation accuracy of GF-3 SAR satellite system[J]. Journal of Radars, 2017, 6(1): 11-16 (in Chinese). | |
89 | EINEDER M, MINET C, STEIGENBERGER P, et al. Imaging geodesy: Toward centimeter-level ranging accuracy with TerraSAR-X?[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2): 661-671. |
90 | CONG X Y, BALSS U, EINEDER M, et al. Imaging geodesy: Centimeter-level ranging accuracy with TerraSAR-X: An update?[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5): 948-952. |
91 | LI J N, YANG Q, LI Z Y, et al. A blind localization method based on monostatic equivalent for bistatic SAR[C]?∥IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2022: 1836-1839. |
92 | LI J N, YANG Q, LI Z Y, et al. A blind localization method with multi-point scatterer targets for BiSAR[C]?∥2021 CIE International Conference on Radar (Radar). Piscataway: IEEE Press, 2021: 759-762. |
93 | FU X Q, CHEN M R. Missile location based on missile-borne bistatic SAR[C]∥2014 Seventh International Symposium on Computational Intelligence and Design. Piscataway: IEEE Press, 2014: 232-235. |
94 | 梅海文, 孟自强, 李亚超, 等. 双基前视SAR几何定位及同步误差分析[J]. 电子与信息学报, 2018, 40(4): 882-889. |
MEI H W, MENG Z Q, LI Y C, et al. Bistatic forward-looking SAR geometrical positioning and analysis of synchronization error[J]. Journal of Electronics & Information Technology, 2018, 40(4): 882-889 (in Chinese). | |
95 | LI X R, JILKOV V P. Survey of maneuvering target tracking. Part Ⅰ. Dynamic models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1333-1364. |
96 | SU Y, HE Z S, DENG M L, et al. Collaborative resource allocation and beampattern optimization for maneuvering targets tracking with distributed radar network[C]∥IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2022: 7669-7672. |
97 | OLFATI-SABER R, JALALKAMALI P. Collaborative target tracking using distributed Kalman filtering on mobile sensor networks[C]?∥Proceedings of the 2011 American Control Conference. Piscataway: IEEE Press, 2011: 1100-1105. |
98 | SUGANYA S. A cluster-based approach for collaborative target tracking in wireless sensor networks[C]?∥2008 First International Conference on Emerging Trends in Engineering and Technology. Piscataway: IEEE Press, 2008: 276-281. |
99 | YANG Q, LI Z Y, LI J N, et al. A novel bistatic SAR maritime ship target imaging algorithm based on cubic phase time-scaled transformation?[J]. Remote Sensing, 2023, 15(5): 1330. |
100 | WU J J, YANG J Y, YANG H G, et al. Optimal geometry configuration of bistatic forward-looking SAR[C]?∥2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE Press, 2009: 1117-1120. |
101 | AN H Y, WU J J, SUN Z C, et al. Flight parameter design for translational invariant bistatic forward-looking SAR based on multiobjective particle swarm optimization[C]?∥2016 CIE International Conference on Radar (RADAR). Piscataway: IEEE Press, 2016: 1-5. |
102 | LU Z, WANG Y K, XU M M, et al. Spacecraft formation design for bistatic SAR with GEO illuminator and LEO receiver[C]?∥IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2018: 4451-4454. |
103 | LI N, HOU Y S, XING L, et al. An optimization method for distributed InSAR satellite formation configuration[C]?∥2022 3rd China International SAR Symposium (CISS). Piscataway: IEEE Press, 2022: 1-4. |
104 | SCHARF D P, HADAEGH F Y, PLOEN S R. A survey of spacecraft formation flying guidance and control. Part Ⅱ: control[C]?∥Proceedings of the 2004 American Control Conference. Piscataway: IEEE Press, 2004: 2976-2985. |
105 | LU J H, CHEN G R. A time-varying complex dynamical network model and its controlled synchronization criteria[J]. IEEE Transactions on Automatic Control, 2005, 50(6): 841-846. |
106 | ZHOU J, LU J N, Lü J H. Pinning adaptive synchronization of a general complex dynamical network[J]. Automatica, 2008, 44(4): 996-1003. |
107 | HU Q L, SHI Y X, WANG C L. Event-based formation coordinated control for multiple spacecraft under communication constraints[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(5): 3168-3179. |
108 | LIPPAY Z S, HOAGG J B. Formation control with time-varying formations, bounded controls, and local collision avoidance[J]. IEEE Transactions on Control Systems Technology, 2022, 30(1): 261-276. |
109 | SUI Z Z, PU Z Q, YI J Q, et al. Formation control with collision avoidance through deep reinforcement learning using model-guided demonstration?[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(6): 2358-2372. |
110 | LIU H, MENG Q Y, PENG F C, et al. Heterogeneous formation control of multiple UAVs with limited-input leader via reinforcement learning?[J]. Neurocomputing, 2020, 412: 63-71. |
111 | ZHOU Y L, LU F, PU G, et al. Adaptive leader-follower formation control and obstacle avoidance via deep reinforcement learning[C]?∥2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2019: 4273-4280. |
112 | 田磊, 董希旺, 赵启伦, 等. 异构集群系统分布式自适应输出时变编队跟踪控制[J]. 自动化学报, 2021, 47(10): 2386-2401. |
TIAN L, DONG X W, ZHAO Q L, et al. Distributed adaptive time-varying output formation tracking for heterogeneous swarm systems[J]. Acta Automatica Sinica, 2021, 47(10): 2386-2401 (in Chinese). | |
113 | GONG J Y, JIANG B, MA Y J, et al. Distributed adaptive fault-tolerant formation control for heterogeneous multiagent systems with communication link faults?[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 784-795. |
114 | LIU K X, DUAN P H, DUAN Z S, et al. Leader-following consensus of multi-agent systems with switching networks and event-triggered control?[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(5): 1696-1706. |
115 | LIU K X, GU H B, WANG W, et al. Semiglobal consensus of a class of heterogeneous multi-agent systems with saturation?[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 4946-4955. |
116 | LIU K X, CHEN Y, DUAN Z S, et al. Cooperative output regulation of LTI plant via distributed observers with local measurement[J]. IEEE Transactions on Cybernetics, 2018, 48(7): 2181-2191. |
117 | LU J H, YU X H, CHEN G R, et al. Characterizing the synchronizability of small-world dynamical networks[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2004, 51(4): 787-796. |
118 | 吴姣. 分布式SAR构型优化设计与基于事件驱动机制的构型控制[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
WU J. Configuration optimization design of distributed SAR and configuration control based on event-driven mechanism[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese). | |
119 | 李凯. 通讯受限下分布式SAR的轨道协同和波束同步控制[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
LI K. Orbit coordination and beam synchronization control of distributed SAR under communication constraints[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese). | |
120 | 孟自强, 李亚超, 汪宗福, 等. 弹载双基前视SAR俯冲段弹道设计方法[J]. 系统工程与电子技术, 2015, 37(4): 768-774. |
MENG Z Q, LI Y C, WANG Z F, et al. Design method of MBFL-SAR trajectory during terminal diving period[J]. Systems Engineering and Electronics, 2015, 37(4): 768-774 (in Chinese). | |
121 | 梅海文, 李亚超, 邢孟道, 等. 机-弹双基前视SAR俯冲段轨迹设计方法[J]. 系统工程与电子技术, 2019, 41(4): 752-758. |
MEI H W, LI Y C, XING M D, et al. Trajectory design method for the terminal diving period of AMBFL-SAR[J]. Systems Engineering and Electronics, 2019, 41(4): 752-758 (in Chinese). | |
122 | 郭媛, 索志勇, 王婷婷, 等. 弹载双基前视SAR构型参数优化设计方法[J]. 系统工程与电子技术, 2023, 45(11): 3449-3454. |
GUO Y, SUO Z Y, WANG T T, et al. Configuration parameter optimization design method of MBFL-SAR[J]. Systems Engineering and Electronics, 2023, 45(11): 3449-3454 (in Chinese). | |
123 | SUN Z C, WU J J, YANG J Y, et al. 3-D path planning for GEO-UAV bistatic SAR using multiobjective evolutionary algorithms[C]∥2016 IEEE Radar Conference (RadarConf). Piscataway: IEEE Press, 2016: 1-5. |
124 | SUN Z C, WU J J, YANG J Y, et al. Path planning for GEO-UAV bistatic SAR using constrained adaptive multiobjective differential evolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11): 6444-6457. |
125 | SUN Z C, REN H, SUN H R, et al. Terminal trajectory planning for synthetic aperture radar imaging guidance based on chronological iterative search framework?[J]. IEEE Transactions on Cybernetics, 2024, 54(5): 3065-3078. |
126 | 姚书剑. 基于GEO辐射源的机动平台双基SAR构型规划方法研究[D]. 成都: 电子科技大学, 2022. |
YAO S J. Research on configuration planning method of bistatic SAR for mobile platform based on GEO emitter[D]. Chengdu: University of Electronic Science and Technology of China, 2022 (in Chinese). | |
127 | ZHU F T, WU Y J. Research on radar seeker trajectory planning algorithm based on multi constraint optimization [C]∥Proceedings of the 24th Academic Annual Conference of the Beijing Mechanics Society 2018, 2018. |
128 | ZHU F T, WU Y J. Research on real time path planning algorithm based on optimal feedback control [C]?∥Proceedings of the 24th Academic Annual Conference of the Beijing Mechanics Society 2018, 2018. |
129 | 李博皓, 吴云洁. 弹载雷达成像制导路径规划的LSTM模型研究[J]. 系统仿真学报, 2019, 31(12): 2696-2701. |
LI B H, WU Y J. LSTM model for trajectory design of missile-borne BFSAR imaging guidance?[J]. Journal of System Simulation, 2019, 31(12): 2696-2701 (in Chinese). | |
130 | SINHA A, KUMAR S R. Supertwisting control-based cooperative salvo guidance using leader-follower approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3556-3565. |
131 | KUMAR S R, MUKHERJEE D. Cooperative salvo guidance using finite-time consensus over directed cycles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1504-1514. |
132 | YU J L, SHI Z X, DONG X W, et al. Impact time consensus cooperative guidance against the maneuvering target: Theory and experiment?[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4590-4603. |
133 | DONG W, WANG C Y, WANG J N, et al. Fixed-time terminal angle-constrained cooperative guidance law against maneuvering target?[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 1352-1366. |
134 | ZHANG S, GUO Y, LIU Z G, et al. Finite-time cooperative guidance strategy for impact angle and time control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2): 806-819. |
135 | ZHANG L, LI D Y, JING L, et al. Appointed-time cooperative guidance law with line-of-sight angle constraint and time-to-go control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 3142-3155. |
136 | LIANG L, DENG F, LU M B, et al. Analysis of role switch for cooperative target defense differential game[J]. IEEE Transactions on Automatic Control, 2021, 66(2): 902-909. |
137 | ZHANG M, LIANG C Y, MEI J S. Robust guidance law for cooperative aerial target circumnavigation of UAVs based on composite system theory[J]. Aerospace Science and Technology, 2023, 140: 108439. |
138 | CHEN Y, WU S F, WANG X L, et al. Time and FOV constraint guidance applicable to maneuvering target via sliding mode control[J]. Aerospace Science and Technology, 2023, 133: 108104. |
139 | MUKHERJEE D, KUMAR S R. Field-of-view constrained impact time guidance against stationary targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 3296-3306. |
140 | YANG X Y, ZHANG Y C, SONG S M. Two-stage cooperative guidance strategy with impact-angle and field-of-view constraints?[J]. Journal of Guidance, Control, and Dynamics, 2023, 46(3): 590-599. |
141 | WANG C Y, DONG W, WANG J N, et al. Impact-angle-constrained cooperative guidance for salvo attack[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(4): 684-703. |
142 | LEE S, CHO N, KIM Y. Impact-time-control guidance strategy with a composite structure considering the seeker’?s field-of-view constraint?[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(8): 1566-1574. |
143 | DONG W, WANG C Y, WANG J N, et al. Three-dimensional nonsingular cooperative guidance law with different field-of-view constraints[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(11): 2001-2015. |
144 | LIU S X, YAN B B, ZHANG T, et al. Coverage-based cooperative guidance law for intercepting hypersonic vehicles with overload constraint?[J]. Aerospace Science and Technology, 2022, 126: 107651. |
145 | 孙红燕, 周洁, 陈超波, 等. 无人机集群协同免疫自学习围捕策略研究[J]. 战术导弹技术, 2023(1): 132-142. |
SUN H Y, ZHOU J, CHEN C B, et al. Cooperative hunting strategy of UAV swarm based on immune self-learning[J]. Tactical Missile Technology, 2023(1): 132-142 (in Chinese). |
/
〈 |
|
〉 |