Electronics and Electrical Engineering and Control

Promoting continuous innovation in space transportation systems: Control technologies and challenges

  • Zhengyu SONG
Expand
  • China Academy of Launch Vehicle Technology,Beijing 100076,China
E-mail: zycalt12@sina.com

Received date: 2024-10-28

  Revised date: 2024-11-19

  Accepted date: 2024-12-25

  Online published: 2025-01-07

Supported by

National Natural Science Foundation of China(52232104)

Abstract

Space transportation systems have supported China in completing numerous major space engineering projects, including manned spaceflight and lunar exploration missions. Facing the intense demands for future launches and the necessity of scheduled space transportation, there is a growing need for launch vehicles with higher development efficiency, greater adaptability, and improved comprehensive performance. Control technologies can play a significant role in this development process, and continuously innovating at the theoretical method level is a very cost-effective solution compared to other technical approaches. The paper highlights three key challenges in space transportation system control technology: the integrated design of guidance and trajectory planning, strong adaptive control in the face of global uncertainty, and active flow pattern control in cryogenic fluid transmission. For the first two technologies, their conceptual connotations, necessity, research and application status in the Long March launch vehicles, and future prospects are discussed. For the third technology, a technical roadmap for autonomous control based on multidisciplinary crossover solutions is proposed. These challenges have long been neglected due to the lack of good solutions, limiting the further improvement of launch vehicle performance. However, with these technological breakthroughs, we anticipate a significant advancement in space transportation systems.

Cite this article

Zhengyu SONG . Promoting continuous innovation in space transportation systems: Control technologies and challenges[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(6) : 531446 -531446 . DOI: 10.7527/S1000-6893.2024.31446

References

1 姜杰. 长征三号甲系列运载火箭高适应性发展: 从总体与导航制导控制的视角[J]. 宇航总体技术20237(2): 23-26.
  JIANG J. High adaptability development of LM-3A series launch vehicles: From the aspects of vehicle system and its guidance & navigation control[J]. Astronautical Systems Engineering Technology20237(2): 23-26 (in Chinese).
2 吕新广, 宋征宇. 载人运载火箭迭代制导方法应用研究[J]. 载人航天200915(1): 9-14.
  LU X G, SONG Z Y. Study of the iterative guidance engineering application to manned launch vehicle?[J]. Manned Spaceflight200915(1): 9-14 (in Chinese).
3 孙艳秋, 吴庆军, 张硕, 等. 面向零窗口发射的全冗余一体化测发控系统[J]. 导弹与航天运载技术2022(1): 53-58.
  SUN Y Q, WU Q J, ZHANG S, et al. Integrated measurement control and launch system with full redundancy for zero-window launching?[J]. Missiles and Space Vehicles2022(1): 53-58 (in Chinese).
4 李学锋, 尚腾, 苏磊, 等. 新一代大型运载火箭长征五号控制技术[J]. 导弹与航天运载技术2021(5): 58-65.
  LI X F, SHANG T, SU L, et al. Control technology of new generation large launch vehicle long March 5?[J]. Missiles and Space Vehicles2021(5): 58-65 (in Chinese).
5 HU H F PAN H, HE Y, et al. Autonomous control technologies of the new generation launch vehicle?[J]. Aerospace China202122(2): 25-34.
6 邢林峰, 李一冰. 日本“瞳”卫星失败的启示[C]∥中国宇航学会先进小卫星技术与应用专业委员会第一届学术交流会暨第四届小卫星技术交流会, 2017.
7 徐丹丹, 雷宁, 杨亦婷. 织女星火箭固体发动机研制故障综述[J]. 固体火箭技术202144(3): 311-320.
  XU D D, LEI N, YANG Y T. Summary of failures in the development of solid rocket motor for Vega launch vehicle?[J]. Journal of Solid Rocket Technology202144(3): 311-320 (in Chinese).
8 隋阳, 杨开. 欧洲阿里安-6新型主力火箭完成首飞[J]. 国际太空2024(8): 10-16.
  SUI Y, YANG K. European Ariane-6 new main rocket completed its first flight?[J]. Space International2024(8): 10-16 (in Chinese).
9 龙雪丹, 杨开. 猎鹰-9火箭二子级故障情况分析[J]. 国际太空2024(9): 14-18.
  LONG X D, YANG K. Fault analysis of Falcon-9 rocket secondary stage?[J]. Space International2024(9): 14-18 (in Chinese).
10 余梦伦. 液体火箭弹道设计[M]∥余梦伦院士文集. 北京: 中国宇航出版社, 2019: 68.
  YU M L. Liquid rocket ballistic design?[M]?∥Collected Works of Academician Yu Menglun. Beijing: China Astronautic Publishing House, 2019: 68 (in Chinese).
11 GOODMAN J. Helmut horn and the origin of the Saturn V iterative guidance mode (IGM): AIAA-2021-2020[R]. Reston: AIAA, 2021.
12 GOODMAN J. Roland jaggers and the development of space shuttle powered explicit guidance (PEG)?[C]?∥AIAA Scitech 2021 Forum. Reston: AIAA, 2021.
13 SONG Z Y, ZHAO D J, THEIL S. Autonomous trajectory planning and guidance control for launch vehicles[M]. Berlin: Springer Nature, 2023: 36-41.
14 PORTEN P V D, AHMAD N, HAWKINS M, et al. Powered explicit guidance modifications and enhancements for space launch system block-1 and block-1B vehicles[C]∥AAS GNC (Guidance, Navigation, and Control) Conference. San Francisco: AAS, 2018.
15 宋征宇. 从准确、精确到精益求精: 载人航天推动运载火箭制导方法的发展[J]. 航天控制201331(1): 4-10, 31.
  SONG Z Y. From accurate, precise to perfect-manned space promotes the development of guidance method on launch vehicle?[J]. Aerospace Control201331(1): 4-10, 31 (in Chinese).
16 施国兴, 吕新广, 巩庆海. 满足多终端约束的二次曲线迭代制导方法研究[J]. 中国空间科学技术201838(2): 24-31.
  SHI G X, LYU X G, GONG Q H. Research on quadratic curve IGM for multi-terminal constraints?[J]. Chinese Space Science and Technology201838(2): 24-31 (in Chinese).
17 何勇, 王健, 宋征宇, 等. 自适应预测补偿的迭代制导方法及其应用研究[J]. 宇航学报202243(6): 762-771.
  HE Y, WANG J, SONG Z Y, et al. Study and application of iterative guidance algorithm with adaptive prediction and compensation?[J]. Journal of Astronautics202243(6): 762-771 (in Chinese).
18 SONG Z Y, LIU Y, HE Y, et al. Autonomous mission reconstruction during the ascending flight of launch vehicles under typical propulsion system failures?[J]. Chinese Journal of Aeronautics202235(6): 211-225.
19 WANG C, SONG Z Y. Powered-coast-powered guidance reconfiguration method of launch vehicle with thrust drop fault[J]. Guidance, Navigation and Control20222(1): 2250003.
20 SONG Z Y, WANG C, GONG Q H. Joint dynamic optimization of the target orbit and flight trajectory of a launch vehicle based on state-triggered indices?[J]. Acta Astronautica2020174: 82-93.
21 SONG Z. The development of autonomous dynamic trajectory optimization control of launch vehicles?[J]. Aerospace China202021(2): 5-15.
22 王聪, 王劲博, 宋征宇. 登月火箭剩余运载能力估计与停泊轨道重规划[J]. 宇航学报202344(9): 1317-1328.
  WANG C, WANG J B, SONG Z Y. Residual carrying capacity evaluation and parking orbit re-planning for lunar exploration launch vehicle?[J]. Journal of Astronautics202344(9): 1317-1328 (in Chinese).
23 宋征宇, 巩庆海, 王聪, 等. 长征运载火箭上升段的自主制导方法及其研究进展[J]. 中国科学: 信息科学202151(10): 1587-1608.
  SONG Z Y, GONG Q H, WANG C, et al. Review and progress of the autonomous guidance method for Long March launch vehicle ascent flight[J]. Scientia Sinica (Informationis)202151(10): 1587-1608 (in Chinese).
24 LU P. Introducing computational guidance and control[J]. Journal of Guidance, Control, and Dynamics201740(2): 193.
25 XU Y W, LI D W, XI Y G, et al. An improved predictive controller on the FPGA by hardware matrix inversion[J]. IEEE Transactions on Industrial Electronics201865(9): 7395-7405.
26 谭述君, 何骁, 张立勇, 等. 运载火箭推力故障下基于智能决策的在线轨迹重规划方法[J]. 宇航学报202142(10): 1228-1236.
  TAN S J, HE X, ZHANG L Y, et al. Online trajectory replanning method based on intelligent decision-making for launch vehicles under thrust drop failure?[J]. Journal of Astronautics202142(10): 1228-1236 (in Chinese).
27 Horn J F, Schmidt E M, Geiger B R, et al. Neural network-based trajectory optimization for unmanned aerial vehicles[J]. Journal of Guidance, Control, and Dynamics201235(2): 548-562.
28 SHI J L, WANG J B, SU L F, et al. A neural network warm-started indirect trajectory optimization method[J]. Aerospace20229(8): 435.
29 SONG Z Y, PAN H, SHAO M H. Responsive tolerant control: an approach to extend adaptability of launch vehicles?[J]. Progress in Aerospace Sciences2024149: 101028.
30 潘豪, 胡瑞光, 宋征宇, 等. 推力矢量极性错误下的飞行控制自主重构技术[J]. 中国科学: 信息科学202252(5): 870-889.
  PAN H, HU R G, SONG Z Y, et al. Autonomous reconfiguration of flight control under thrust vector polarity errors[J]. Scientia Sinica (Informationis)202252(5): 870-889 (in Chinese).
31 潘豪, 王光辉, 邵梦晗, 等. 基于ESO的运载火箭姿控喷管故障辨识设计及实现[J]. 导弹与航天运载技术2021(1): 72-75.
  PAN H, WANG G H, SHAO M H, et al. Design and implementation of fault identification for attitude control nozzle of launch vehicle based on ESO?[J]. Missiles and Space Vehicles2021(1): 72-75 (in Chinese).
32 SIMPLíCIO P, MARCOS A. New control functionalities for launcher load relief in ascent and descent flight[C]∥8th European Conference for Aeronautics and Aerospace Sciences. Paris: EUCASS, 2019.
33 SONG Z Y, PAN H, XU S S, et al. Comprehensive load relief of launch vehicle with the constraints of legacy stages[J]. AIAA Journal202260(8): 4991-5003.
34 吴素春, 贾文成, 邱吉宝. 载人运载火箭全箭模态试验[J]. 宇航学报200526(5): 531-534, 570.
  WU S C, JIA W C, QIU J B. Integrated modal test for the manned launch vehicle?[J]. Journal of Astronautics200526(5): 531-534, 570 (in Chinese).
35 贾文成, 王鹏辉, 张永亮. 新一代大型火箭全箭模态试验[J]. 强度与环境201744(2): 1-9.
  JIA W C, WANG P H, ZHANG Y L. Modal test technology for the new large launch vehicle?[J]. Structure & Environment Engineering201744(2): 1-9 (in Chinese).
36 邵梦晗, 胡海峰, 潘豪, 等. 一种运载火箭弹性自主辨识与自适应控制方法[J]. 宇航学报202344(12): 1916-1924.
  SHAO M H, HU H F, PAN H, et al. A method for elastic autonomous identification and adaptive control of launch vehicles?[J]. Journal of Astronautics202344(12): 1916-1924 (in Chinese).
37 袁赫, 李静琳, 宋征宇, 等. 运载火箭飞行载荷联合优化控制技术[J]. 宇航学报202243(10): 1291-1301.
  YUAN H, LI J L, SONG Z Y, et al. Joint optimal control technology of launch vehicle flight load[J]. Journal of Astronautics202243(10): 1291-1301 (in Chinese).
38 赵永志, 张普卓, 杜昊昱, 等. 面对称运载火箭优势面滚转迎风技术[J]. 国防科技大学学报202446(3): 88-97.
  ZHAO Y Z, ZHANG P Z, DU H Y, et al. Preferred plane bank-to-wind technology for plane-symmetric launch vehicle?[J]. Journal of National University of Defense Technology202446(3): 88-97 (in Chinese).
Outlines

/