Electronics and Electrical Engineering and Control

Adaptive prescribed-time/performance control for plane-symmetric aircraft in boost phase

  • Naigang CUI ,
  • Guoxin QU ,
  • Xinhai MA ,
  • Shihao XU ,
  • Changzhu WEI
Expand
  • 1.School of Astronautics,Harbin Institute of Technology,Harbin  150001,China
    2.Beijing System Design Institute of Electro-Mechanic Engineering,Beijing  100854,China

Received date: 2024-10-30

  Revised date: 2024-11-18

  Accepted date: 2024-12-24

  Online published: 2024-12-30

Supported by

National Natural Science Foundation of China(62373124)

Abstract

In this paper, an adaptive prescribed-time/performance control method is proposed for the plane-symmetric aircraft in the boost phase subject to thrust misalignment, significant asymmetric aerodynamics, and high-altitude wind shear. This method allows the convergence time and steady-state accuracy of attitude control to be conveniently pre-set using two independent parameters of the process function. Firstly, a dynamic model of the plane-symmetrical aircraft is established and transformed into a double-integrator cascaded control-oriented model. Secondly, a piece-wise continuous process function is designed to constrain the convergence time and steady-state accuracy, and an unconstrained system is obtained by using barrier function-based transformation. Thirdly, based on the backstepping method, an adaptive control law is designed to ensure the boundedness of the unconstrained variables. A segmented continuous function is introduced to avoid control chattering, and a neural network is employed for adaptive approximation and disturbance compensation. To address the singularity issue of the prescribed-performance control method with large deviations caused by wind shear, a reset strategy of process function is devised to relax the constraint boundaries and eliminate control singularities. Finally, the stability of the closed-loop system is proven based on the Lyapunov method, and the effectiveness of the control method is validated through numerical simulations.

Cite this article

Naigang CUI , Guoxin QU , Xinhai MA , Shihao XU , Changzhu WEI . Adaptive prescribed-time/performance control for plane-symmetric aircraft in boost phase[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(6) : 531470 -531470 . DOI: 10.7527/S1000-6893.2024.31470

References

1 卢宝刚. 助推—滑翔导弹轨迹设计与制导方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
  LU B G. Research on trajectory design and guidance method of boost-glide missile[D]. Harbin: Harbin Institute of Technology, 2015 (in Chinese).
2 柏涛, 王在铎, 王勇, 等. 基于气动力辨识的主动减载控制方法[J]. 兵器装备工程学报201839(10): 19-23.
  BAI T, WANG Z D, WANG Y, et al. Road relief control method based on identification of aerodynamic force for ballistic vehicle[J]. Journal of Ordnance Equipment Engineering201839(10): 19-23 (in Chinese).
3 NAIR A P, SELVAGANESAN N, LALITHAMBIKA V R. Lyapunov based PD/PID in model reference adaptive control for satellite launch vehicle systems[J]. Aerospace Science and Technology201651: 70-77.
4 FAN X S, BAI X B, JIANG Z Y, et al. Design and verification of attitude control system for a boost-glide rocket[J]. IEEE Access20219: 136360-136372.
5 谢昌霖, 杨述明, 程玉强. 考虑推力损失的运载火箭主动段容错控制[J]. 国防科技大学学报202446(4): 54-62.
  XIE C L, YANG S M, CHENG Y Q. Fault tolerant control of launch vehicle boost phase considering thrust loss[J]. Journal of National University of Defense Techno-logy202446(4): 54-62 (in Chinese).
6 孙平, 刘昆. 小型固体运载器起飞段姿态控制方法研究[J]. 固体火箭技术201033(1): 1-4, 29.
  SUN P, LIU K. Attitude control method of solid launch vehicles during take-off phase[J]. Journal of Solid Rocket Technology201033(1): 1-4, 29 (in Chinese).
7 韦常柱, 琚啸哲, 何飞毅, 等. 运载火箭主动段自适应增广控制[J]. 宇航学报201940(8): 918-927.
  WEI C Z, JU X Z, HE F Y, et al. Ascent flight adaptive augmenting control for launch vehicles[J]. Journal of Astronautics201940(8): 918-927 (in Chinese).
8 刘玉玺, 薛宇, 丁秀峰, 等. 大型捆绑运载火箭反步自适应增广控制研究[J]. 飞控与探测20236(6): 23-30.
  LIU Y X, XUE Y, DING X F, et al. Research on backstepping adaptive augmenting control method of large strap-on launch vehicle[J]. Flight Control & Detection20236(6): 23-30 (in Chinese).
9 李晓栋, 廖宇新, 李珺. 基于MFTESO的可重复使用运载火箭多变量有限时间控制方法[J]. 控制与信息技术2019(4): 12-17, 43.
  LI X D, LIAO Y X, LI J. MFTESO based multivariable finite-time control for reusable rocket[J]. Control and Information Technology2019(4): 12-17, 43 (in Chinese).
10 WEI C Z, WANG M Z, LU B G, et al. Accelerated Landweber iteration based control allocation for fault tolerant control of reusable launch vehicle[J]. Chinese Journal of Aeronautics202235(2): 175-184.
11 JIMéNEZ-RODRíGUEZ E, MU?OZ-VáZQUEZ A J, SáNCHEZ-TORRES J D, et al. A Lyapunov-like characterization of predefined-time stability[J]. IEEE Transactions on Automatic Control202065(11): 4922-4927.
12 BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control200853(9): 2090-2099.
13 姜雨石, 陈旸, 高路, 等. 重型运载火箭预设时间自适应控制[J]. 系统工程与电子技术202345(8): 2570-2577.
  JIANG Y S, CHEN Y, GAO L, et al. Predefined-time adaptive control for heavy-lift launch vehicles[J]. Systems Engineering and Electronics202345(8): 2570-2577 (in Chinese).
14 ZHANG L, JU X Z, CUI N G. Ascent control of heavy-lift launch vehicle with guaranteed predefined performance[J]. Aerospace Science and Technology2021110: 106511.
15 张亮, 李丹钰, 崔乃刚, 等. 垂直起降可重复使用运载火箭全剖面飞行预设性能控制[J]. 航空学报202344(23): 628103.
  ZHANG L, LI D Y, CUI N G, et al. Full flight profile prescribed performance control for vertical take-off and vertical landing reusable launch vehicle[J]. Acta Aeronautica et Astronautica Sinica202344(23): 628103 (in Chinese).
16 ALDANA-LóPEZ R, GóMEZ-GUTIéRREZ D, JIMéNEZ-RODRíGUEZ E, et al. Enhancing the settling time estimation of a class of fixed-time stable systems[J]. International Journal of Robust and Nonlinear Control201929(12): 4135-4148.
17 ZHOU B. Finite-time stabilization of linear systems by bounded linear time-varying feedback[J]. Automatica2020113: 108760.
18 贾沛然, 陈克俊, 何力. 远程火箭弹道学[M]. 长沙: 国防科技大学出版社, 1993: 65-67.
  JIA P R, CHEN K J, HE L. Long-range rocket ballistics[M]. Changsha: National University of Defense Technology Press, 1993: 65-67 (in Chinese).
19 赵永志, 张普卓, 杜昊昱, 等. 面对称运载火箭优势面滚转迎风技术[J]. 国防科技大学学报202446(3): 88-97.
  ZHAO Y Z, ZHANG P Z, DU H Y, et al. Preferred plane bank-to-wind technology for plane-symmetric launch vehicle[J]. Journal of National University of Defense Technology202446(3): 88-97 (in Chinese).
20 张亮. 重型运载火箭自适应控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
  ZHANG L. Research on adaptive control method of heavy launch vehicle[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese).
21 曾庆华, 黄琳, 夏智勋. 不同尾翼受发动机羽流作用对弹体飞行性能的影响[J]. 固体火箭技术200225(3): 26-28.
  ZENG Q H, HUANG L, XIA Z X. Effect of impact of engine plume to tails on missile flight performance[J]. Journal of Solid Rocket Technology200225(3): 26-28 (in Chinese).
22 LU K X, LIU Z, YU H Y, et al. Adaptive fuzzy inverse optimal fixed-time control of uncertain nonlinear systems[J]. IEEE Transactions on Fuzzy Systems202230(9): 3857-3868.
23 KRSTIC M, KOKOTOVIC P, KANELLAKOPOULOS I. Nonlinear and adaptive control design[M]. New York: John Wiley & Sons, Inc., 1995: 511-514.
24 ZHOU S Y, SONG Y D. Prescribed performance neuroadaptive fault-tolerant compensation for MIMO nonli-near systems under extreme actuator failures[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems202151(9): 5427-5436.
25 GAO Z, WANG Y J. Neuroadaptive fault-tolerant control with guaranteed performance for Euler-Lagrange systems under dying power faults[J]. IEEE Transactions on Neural Networks and Learning Systems202334(12): 10447-10457.
26 XU S H, WEI C Z, CAI L G, et al. Neural network-based adaptive optimal tracking control for hypersonic morphing aircraft with appointed-time prescribed performance[J]. Journal of the Franklin Institute2024361(12): 107026.
27 徐世昊, 关英姿, 浦甲伦, 等. VTHL运载器再入返回预设时间滑模控制[J]. 航空学报202344(7): 326857.
  XU S H, GUAN Y Z, PU J L, et al. Predefined-time sliding mode control for VTHL launch vehicle in reentry phase[J]. Acta Aeronautica et Astronautica Sinica202344(7): 326857 (in Chinese).
28 ASTOLFI D, MARCONI L, PRALY L, et al. Low-power peaking-free high-gain observers[J]. Automatica201898: 169-179.
29 CRUZ-ZAVALA E, MORENO J A. Levant’s arbitrary-order exact differentiator: a Lyapunov approach[J]. IEEE Transactions on Automatic Control201964(7): 3034-3039.
30 杨伟奇, 许志, 唐硕, 等. 基于自抗扰的运载火箭主动减载控制技术[J]. 北京航空航天大学学报201642(1): 130-138.
  YANG W Q, XU Z, TANG S, et al. Active disturbance rejection control method on load relief system for launch vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics201642(1): 130-138 (in Chinese).
Outlines

/