Material Engineering and Mechanical Manufacturing

Origami metamaterials and their applications and prospects in aerospace field

  • Xiaokui YUE ,
  • Mingzhu ZHU ,
  • Haohua GENG ,
  • Lijing GONG ,
  • Yongyue WANG
Expand
  • 1.School of Astronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.National Key Laboratory of Aerospace Flight Dynamics,Xi’an 710072,China

Received date: 2024-10-11

  Revised date: 2024-11-15

  Accepted date: 2024-12-11

  Online published: 2024-12-30

Supported by

National Natural Science Foundation of China(U2013206);Key Laboratory of Aerospace Flight Dynamics Foundation(ZBS2023013);Key Laboratory of Space Intelligent Control Foundation(2024CXPTGFJJ01215)

Abstract

With the rapid development of aerospace technology, the demands for the structure, performance, and functionality of future spacecraft are becoming increasingly stringent. The design of lightweight, high-strength materials with multifunctionality and multimodal capabilities has become a key requirement. Origami metamaterials, with their unique geometric designs and mechanical properties, have become a research hotspot in the field of aerospace.They are characterized by reconfigurability, multi-stability, and energy absorption. Combined with modern mathematical modeling and material science, these materials achieve adjustable deformation, lightweight, easy deployment and retraction through precise folding structures. In the field of aerospace, origami metamaterials are not only applied to deployable structures such as antennas and solar panels but also show potential in shock absorption, energy absorption, and protection. The programmable geometric characteristics of origami metamaterials endow spacecraft with the ability to adapt to deformation, capable of dealing with external pressures and temperature changes in the space environment, enhancing structural reliability and lifespan, and effectively reducing launch costs. This paper reviews the characteristics, design methods, manufacturing techniques, and applications of origami metamaterials, and discusses their development trends and future research directions in aerospace.

Cite this article

Xiaokui YUE , Mingzhu ZHU , Haohua GENG , Lijing GONG , Yongyue WANG . Origami metamaterials and their applications and prospects in aerospace field[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(6) : 531382 -531382 . DOI: 10.7527/S1000-6893.2024.31382

References

1 PERAZA-HERNANDEZ E A, HARTL D J, MALAK J, et al. Origami-inspired active structures: A synthesis and review[J]. Smart Material Structures201423(9): 094001.
2 LEBéE A. From folds to structures, a review[J]. International Journal of Space Structures201530(2): 55-74.
3 NING X, WANG X J, ZHANG Y, et al. Assembly of advanced materials into 3D functional structures by methods inspired by origami and kirigami: A review[J]. Advanced Materials Interfaces20185(13): 1800284.
4 TURNER N, GOODWINE B, SEN M. A review of origami applications in mechanical engineering[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016230(14): 2345-2362.
5 PARK J J, WON P, KO S H. A review on hierarchical origami and kirigami structure for engineering applications[J]. International Journal of Precision Engineering and Manufacturing-Green Technology20196(1): 147-161.
6 RUS D, TOLLEY M T. Design, fabrication and control of origami robots[J]. Nature Reviews Materials20183: 101-112.
7 陈仕魁, 顾险峰. 心脏支架、折纸艺术与超材料设计[J]. 科技导报201735(10): 105.
  CHEN S K, GU X F. Heart stent, origami art and metamaterial design[J]. Science & Technology Review201735(10): 105 (in Chinese).
8 李笑, 李明. 折纸及其折痕设计研究综述[J]. 力学学报201850(3): 467-476.
  LI X, LI M. A review of origami and its crease design[J]. Chinese Journal of Theoretical and Applied Mechanics201850(3): 467-476 (in Chinese).
9 常若菲, 张一慧, 宋吉舟. 可延展结构的设计及力学研究新进展[J]. 固体力学学报201637(2): 95-106.
  CHANG R F, ZHANG Y H, SONG J Z. Recent advances in mechanics of stretchable designs[J]. Chinese Journal of Solid Mechanics201637(2): 95-106 (in Chinese).
10 冯慧娟, 杨名远, 姚国强, 等. 折纸机器人[J]. 中国科学(技术科学)201848(12): 1259-1274.
  FENG H J, YANG M Y, YAO G Q, et al. Origami robots[J]. Scientia Sinica (Technologica)201848(12): 1259-1274 (in Chinese).
11 ZHANG Q W, FANG H B, XU J. Yoshimura-origami based earthworm-like robot with 3-dimensional locomotion capability[J]. Frontiers in Robotics and AI20218: 738214.
12 SAREH P, CHERMPRAYONG P, EMMANUELLI M, et al. Rotorigami: A rotary origami protective system for robotic rotorcraft[J]. Science Robotics20183(22): eaah5228.
13 BHOVAD P, KAUFMANN J, LI S Y. Peristaltic locomotion without digital controllers: Exploiting multi-stability in origami to coordinate robotic motion[J]. Extreme Mechanics Letters201932: 100552.
14 ZHAKYPOV Z, FALAHI M, SHAH M, et al. The design and control of the multi-modal locomotion origami robot, Tribot[C]∥2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2015: 4349-4355.
15 ZHAKYPOV Z, PAIK J. Design methodology for constructing multimaterial origami robots and machines[J]. IEEE Transactions on Robotics201834(1): 151-165.
16 KIM S J, LEE D Y, JUNG G P, et al. An origami-inspired, self-locking robotic arm that can be folded flat[J]. Science Robotics20183(16): eaar2915.
17 FANG H B, ZHANG Y T, WANG K W. Origami-based earthworm-like locomotion robots[J]. Bioinspiration & Biomimetics201712(6): 065003.
18 LEE D Y, KIM S R, KIM J S, et al. Origami wheel transformer: A variable-diameter wheel drive robot using an origami structure[J]. Soft Robotics20174(2): 163-180.
19 SCHENK M, KERR S, SMYTH A M, et al. Inflatable cylinders for deployable space structures[C]∥Proceedings of the First Conference Transformables, 2003.
20 LIU Z Q, QIU H, LI X, et al. Review of large spacecraft deployable membrane antenna structures[J]. Chinese Journal of Mechanical Engineering201730(6): 1447-1459.
21 BERNARDO P, IULIANELLI A, MACEDONIO F, et al. Membrane technologies for space engineering[J]. Journal of Membrane Science2021626: 119177.
22 CHANDRA M, KUMAR S, CHATTOPADHYAYA S, et al. A review on developments of deployable membrane-based reflector antennas[J]. Advances in Space Research202168(9): 3749-3764.
23 王长国, 杜星文, 万志敏. 空间薄膜结构褶皱的数值模拟最新研究进展[J]. 力学进展200737(3): 389-397.
  WANG C G, DU X W, WAN Z M. Advances in the numerical investigations on wrinkles in space membrane structures[J]. Advances in Mechanics200737(3): 389-397 (in Chinese).
24 彭福军, 谢超, 张良俊. 面向空间应用的薄膜可展开结构研究进展及技术挑战[J]. 载人航天201723(4): 427-439.
  PENG F J, XIE C, ZHANG L J. Advancement and technical challenges of deployable membrane structure in space application[J]. Manned Spaceflight201723(4): 427-439 (in Chinese).
25 ZHOU C H, ZHOU Y, WANG B. Crashworthiness design for trapezoid origami crash boxes[J]. Thin-Walled Structures2017117: 257-267.
26 KARAGIOZOVA D, ZHANG J J, LU G X, et al. Dynamic in-plane compression of Miura-ori patterned metamaterials[J]. International Journal of Impact Engineering2019129: 80-100.
27 HOSSAIN BHUIYAN M E, SEMER D, TREASE B P. Dynamic modeling and analysis of strain energy and centrifugal force deployment of an origami flasher[C]∥ ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York: ASME, 2017.
28 LI Y, YOU Z. Open-section origami beams for energy absorption[J]. International Journal of Mechanical Sciences2019157: 741-757.
29 翟家跃. 折纸型蜂窝缓冲装置吸能特性与软着陆性能分析[D]. 南京: 南京理工大学, 2023.
  ZHAI J Y. Energy absorption characteristics and soft landing performance of origami honeycomb buffer device[D]. Nanjing: Nanjing University of Science and Technology, 2023 (in Chinese).
30 SADEGHI S, LI S Y. Fluidic origami cellular structure with asymmetric quasi-zero stiffness for low-frequency vibration isolation[J]. Smart Materials and Structures201928(6): 065006.
31 YANG K, XU S Q, ZHOU S W, et al. Multi-objective optimization of multi-cell tubes with origami patterns for energy absorption[J]. Thin-Walled Structures2018123: 100-113.
32 SONG J, CHEN Y, LU G X. Axial crushing of thin-walled structures with origami patterns[J]. Thin-Walled Structures201254: 65-71.
33 SADEGHI S, LI S Y. Harnessing the quasi-zero stiffness from fluidic origami for low frequency vibration isolation[C]∥ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. New York: ASME, 2017.
34 INAMOTO K, ISHIDA S. Improved feasible load range and its effect on the frequency response of origami-inspired vibration isolators with quasi-zero-stiffness characteristics[J]. Journal of Vibration and Acoustics2019141(2): 021004.
35 黄澍鑫. 圆锥形折叠结构的能量吸收机理研究[D]. 广州: 广州大学, 2024.
  HUANG S X. Research on energy absorption mechanism of floded cone dome[D]. Guangzhou: Guangzhou University, 2024 (in Chinese).
36 SALAZAR R, MURTHY S, PELLAZAR C, et al. TransFormers for lunar extreme environments: Large origami deployable solar reflectors[C]∥2017 IEEE Aerospace Conference. Piscataway: IEEE Press, 2017: 1-7.
37 FELTON S, TOLLEY M, DEMAINE E, et al. A method for building self-folding machines[J]. Science2014345(6197): 644-646.
38 KAUFMANN J, BHOVAD P, LI S Y. Harnessing the multistability of kresling origami for reconfigurable articulation in soft robotic arms[J]. Soft Robotics20229(2): 212-223.
39 FONSECA L M, SAVI M A. Nonlinear dynamics of an autonomous robot with deformable origami wheels[J]. International Journal of Non-Linear Mechanics2020125: 103533.
40 FANG H B, CHU S A, XIA Y T, et al. Programmable self-locking origami mechanical metamaterials[J]. Advanced Materials201830(15): 1706311.
41 SENGUPTA S, LI S Y. Harnessing the anisotropic multistability of stacked-origami mechanical metamaterials for effective modulus programming[J]. Journal of Intelligent Material Systems and Structures201829(14): 2933-2945.
42 DUDTE L H, VOUGA E, TACHI T, et al. Programming curvature using origami tessellations[J]. Nature Materials201615(5): 583-588.
43 YUAN T T, LIU Z Y, ZHOU Y H, et al. Dynamic modeling for foldable origami space membrane structure with contact-impact during deployment[J]. Multibody System Dynamics202050(1): 1-24.
44 WEBB D, HIRSCH B, BACH V, et al. Starshade mechanical architecture & technology effort[C]∥3rd AIAA Spacecraft Structures Conference. Reston: AIAA, 2016.
45 YOU Z, COLE N. Self-locking bi-stable deployable booms[C]∥47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2006.
46 LIU C, FELTON S M. Transformation dynamics in origami[J]. Physical Review Letters2018121(25): 254101.
47 张子安, 刘作林, 徐鉴, 等. 折纸弹簧结构多模式变形实验与分析[J]. 固体力学学报202344(4): 497-511.
  ZHANG Z A, LIU Z L, XU J, et al. Experiments and analysis on the multi-mode deformations of the origami spring structure[J]. Chinese Journal of Solid Mechanics202344(4): 497-511 (in Chinese).
48 XIA Y T, KIDAMBI N, AGARWAL V, et al. The influence of geometry on origami’s deployment dynamics[C]∥Proceedings of the Active and Passive Smart Structures and Integrated Systems XIV. New York: SPIE, 2020.
49 HAN H S, SOROKIN V, TANG L H, et al. A nonlinear vibration isolator with quasi-zero-stiffness inspired by Miura-origami tube[J]. Nonlinear Dynamics2021105(2): 1313-1325.
50 LIU T, WANG Y Z, LEE K. Three-dimensional printable origami twisted tower: Design, fabrication, and robot embodiment[J]. IEEE Robotics and Automation Letters20173(1): 116-123.
51 邱海, 方虹斌, 徐鉴. 多稳态串联折纸结构的非线性动力学特性[J]. 力学学报201951(4): 1110-1121.
  QIU H, FANG H B, XU J. Nonlinear dynamical characteristics of a multi-stable series origami structure[J]. Chinese Journal of Theoretical and Applied Mechanics201951(4): 1110-1121 (in Chinese).
52 方虹斌, 吴海平, 刘作林, 等. 折纸结构和折纸超材料动力学研究进展[J]. 力学学报202254(1): 1-38.
  FANG H B, WU H P, LIU Z L, et al. Advances in the dynamics of origami structures and origami metamaterials[J]. Chinese Journal of Theoretical and Applied Mechanics202254(1): 1-38 (in Chinese).
53 陈耀, 叶王杰, 史佳遥, 等. 三浦折纸超材料结构数字化设计与模型验证[J]. 力学学报202254(7): 2019-2029.
  CHEN Y, YE W J, SHI J Y, et al. Digital design and model verification of miura origami metamaterial structures[J]. Chinese Journal of Theoretical and Applied Mechanics202254(7): 2019-2029 (in Chinese).
54 YE H T, LIU Q J, CHENG J X, et al. Multimaterial 3D printed self-locking thick-panel origami metamaterials[J]. Nature Communications202314(1): 1607.
55 MA J Y, CHAI S B, CHEN Y. Geometric design, deformation mode, and energy absorption of patterned thin-walled structures[J]. Mechanics of Materials2022168: 104269.
56 SCHENK M, GUEST S D. Geometry of miura-folded metamaterials[J]. Proceedings of the National Academy of Sciences of the United States of America2013110(9): 3276-3281.
57 FILIPOV E T, TACHI T, PAULINO G H. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[J]. Proceedings of the National Academy of Sciences of the United States of America2015112(40): 12321-12326.
58 WANG X L, QU H B, HU B Q, et al. Energy absorption of Kresling pattern thin-walled structures with pre-folded patterns and graded stiffness[J]. International Journal of Solids and Structures2024305: 113057.
59 YU H Y, GUO Z, WANG J R. A method of calculating the degree of freedom of foldable plate rigid origami with adjacency matrix[J]. Advances in Mechanical Engineering201810(6): 1687814018779696.
60 MIYASHITA S, MEEKER L, TOLLEY M T, et al. Self-folding miniature elastic electric devices[J]. Smart Material Structures201423(9): 094005.
61 SONG Z C, ZHU J F, WANG X C, et al. Origami metamaterials for ultra-wideband and large-depth reflection modulation[J]. Nature Communications202415(1): 3181.
62 OVERVELDE J T B, DE JONG T A, SHEVCHENKO Y, et al. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom[J]. Nature Communications20167: 10929.
63 ZHAO Z A, KUANG X, WU J T, et al. 3D printing of complex origami assemblages for reconfigurable structures[J]. Soft Matter201814(39): 8051-8059.
64 JI J C, LUO Q T, YE K. Vibration control based metamaterials and origami structures: A state-of-the-art review[J]. Mechanical Systems and Signal Processing2021161: 107945.
65 CHEUNG K C, TACHI T, CALISCH S, et al. Origami interleaved tube cellular materials[J]. Smart Material Structures201423(9): 094012.
66 TAO R, JI L T, LI Y, et al. 4D printed origami metamaterials with tunable compression twist behavior and stress-strain curves[J]. Composites Part B: Engineering2020201: 108344.
67 XIANG X M, QIANG W, HOU B, et al. Quasi-static and dynamic mechanical properties of Miura-ori metamaterials[J]. Thin-Walled Structures2020157: 106993.
68 TOWNSEND S, ADAMS R, ROBINSON M, et al. 3D printed origami honeycombs with tailored out-of-plane energy absorption behavior[J]. Materials & Design2020195: 108930.
69 HUANG K L, MA J Y, ZHOU X, et al. Quasi-static mechanical properties of origami-inspired cellular metamaterials made by metallic 3D printing[J]. Mechanics of Advanced Materials and Structures202330(21): 4459-4472.
70 谢瑞康. 渐变折纸结构[D]. 天津: 天津大学, 2016.
  XIE R K. The graded origami structures[D]. Tianjin: Tianjin University, 2016 (in Chinese).
71 CHEN Z H, LI Y, LI Q M. Hydrogel-driven origami metamaterials for tunable swelling behavior[J]. Materials & Design2021207: 109819.
72 LIU Q J, YE H T, CHENG J X, et al. Stiffness-tunable origami structures via multimaterial three-dimensional printing[J]. Acta Mechanica Solida Sinica202336(4): 582-593.
73 ZHAO W, LI N, LIU L W, et al. Origami derived self-assembly stents fabricated via 4D printing[J]. Composite Structures2022293: 115669.
74 GAO J Y, YOU Z. Origami-inspired Miura-ori honeycombs with a self-locking property[J]. Thin-Walled Structures2022171: 108806.
75 ZARE S, SPAETH A, SURESH S, et al. Three-dimensionally printed self-lock origami: Design, fabrication, and simulation to improve performance of rotational joint[J]. Micromachines202314(8): 1649.
76 ZHANG Y J, WANG L C, SONG W L, et al. Hexagon-twist frequency reconfigurable antennas via multi-material printed thermo-responsive origami structures[J]. Frontiers in Materials20207: 417.
77 WICKELER A L, NAGUIB H E. 3D printed multi-material polylactic acid (PLA) origami-inspired structures for quasi-static and impact applications[J]. Smart Material Structures202231(11): 115018.
78 XUE W B, SUN Z C, YE H T, et al. Rigid-flexible coupled origami robots via multimaterial 3D printing[J]. Smart Material Structures202433(3): 035004.
79 LI S Y, WANG K W. Fluidic origami: A plant-inspired adaptive structure with shape morphing and stiffness tuning[J]. Smart Material Structures201524(10): 105031.
80 BOATTI E, VASIOS N, BERTOLDI K. Origami metamaterials for tunable thermal expansion[J]. Advanced Materials201729(26): 1700360.
81 孙暄, 胡斌, 熊智慧, 等. 航空航天领域用增材制造金属材料的研究进展[J]. 上海金属202446(3): 1-12.
  SUN X, HU B, XIONG Z H, et al. Progress in research on additive manufactured metallic materials reserved for aerospace field[J]. Shanghai Metals202446(3): 1-12 (in Chinese).
82 李涤尘, 鲁中良, 田小永, 等. 增材制造: 面向航空航天制造的变革性技术[J]. 航空学报202243(4): 525387.
  LI D C, LU Z L, TIAN X Y, et al. Additive manufacturing: Revolutionary technology for leading aerospace manufacturing[J]. Acta Aeronautica et Astronautica Sinica202243(4): 525387 (in Chinese).
83 GAO Z Y, WANG H Z, SUN H, et al. Additively manufactured high-energy-absorption metamaterials with artificially engineered distribution of bio-inspired hierarchical microstructures[J]. Composites Part B: Engineering2022247: 110345.
84 JIANG P, ZHANG S S, YANG H, et al. Suture interface inspired self-recovery architected structures for reusable energy absorption[J]. ACS Applied Materials & Interfaces202315(36): 43102-43110.
85 LIU X B, ZHANG K, SHI H Z, et al. Origami-inspired metamaterial with compression-twist coupling effect for low-frequency vibration isolation[J]. Mechanical Systems and Signal Processing2024208: 111076.
86 YASUDA H, YEIN T, TACHI T, et al. Folding behaviour of Tachi-Miura polyhedron bellows[J]. Proceedings of Mathematical, Physical, and Engineering Sciences2013469(2159): 20130351.
87 FILIPOV E T, PAULINO G H, TACHI T. Origami tubes with reconfigurable polygonal cross-sections[J]. Proceedings Mathematical, Physical, and Engineering Sciences2016472(2185): 20150607.
88 CHEN Y, LV W L, LI J L, et al. An extended family of rigidly foldable origami tubes[J]. Journal of Mechanisms and Robotics20179(2): 021002.
89 连威. 基于Kresling折纸结构的可重构连续体机械臂的设计与性能分析[D]. 赣州: 江西理工大学, 2023.
  LIAN W. Design and performance analysis of reconfigurable continuous manipulator based on kresling origami structure[D]. Ganzhou: Jiangxi University of Science and Technology, 2023 (in Chinese).
90 LIU Z L, FANG H B, XU J, et al. Digitized design and mechanical property reprogrammability of multistable origami metamaterials[J]. Journal of the Mechanics and Physics of Solids2023173: 105237.
91 KAMRAVA S, GHOSH R, WANG Z H, et al. Origami-inspired cellular metamaterial with anisotropic multi-stability?[J]. Advanced Engineering Materials201921(2): 1800895.
92 ZHU Z B, WANG H, LI Y F, et al. Origami-based metamaterials for dynamic control of wide-angle absorption in a reconfigurable manner[J]. IEEE Transactions on Antennas and Propagation202270(6): 4558-4568.
93 WANG L C, SONG W L, ZHANG Y J, et al. Active reconfigurable tristable square-twist origami[J]. Advanced Functional Materials202030(13): 1909087.
94 WANG C L, GUO H W, LIU R Q, et al. Reconfigurable origami-inspired multistable metamorphous structures[J]. Science Advances202410(22): eadk8662.
95 LIU Z L, FANG H B, XU J, et al. A novel origami mechanical metamaterial based on Miura-variant designs: Exceptional multistability and shape reconfigurability[J]. Smart Material Structures202130(8): 085029.
96 ZHANG L, PAN F, MA Y, et al. Bistable reconfigurable origami metamaterials with high load-bearing and low state-switching forces[J]. Extreme Mechanics Letters202363: 102064.
97 SURJADI J U, GAO L B, DU H F, et al. Mechanical metamaterials and their engineering applications[J]. Advanced Engineering Materials201921(3): 1800864.
98 JIAO P C, MUELLER J, RANEY J R, et al. Mechanical metamaterials and beyond[J]. Nature Communications202314(1): 6004.
99 LI L Z, YAO H Y, MI S L. Magnetically driven modular mechanical metamaterials with high programmability, reconfigurability, and multiple applications[J]. ACS Applied Materials & Interfaces202315(2): 3486-3496.
100 YAMAGUCHI K, YASUDA H, TSUJIKAWA K, et al. Graph-theoretic estimation of reconfigurability in origami-based metamaterials[J]. Materials & Design2022213: 110343.
101 屠园园, 王大轶, 张香燕, 等. 航天器的可重构性与自主重构方法[J]. 航空学报202344(23): 628855.
  TU Y Y, WANG D Y, ZHANG X Y, et al. Reconfigurability and autonomous reconfiguration methods of spacecraft[J]. Acta Aeronautica et Astronautica Sinica202344(23): 628855 (in Chinese).
102 ZHAI Z R, WANG Y, JIANG H Q. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness[J]. Proceedings of the National Academy of Sciences of the United States of America2018115(9): 2032-2037.
103 田大可, 杨希华, 金路, 等. 面向空间折展机构的刚性折纸研究现状与展望[J]. 南京航空航天大学学报202355(3): 379-400.
  TIAN D K, YANG X H, JIN L, et al. Research status and prospect of rigid origami for space deployable and foldable mechanism[J]. Journal of Nanjing University of Aeronautics & Astronautics202355(3): 379-400 (in Chinese).
104 NANDA A, KARAMI M A. Tunable bandgaps in a deployable metamaterial[J]. Journal of Sound and Vibration2018424: 120-136.
105 PEHRSON N A, AMES D C, SMITH S P, et al. Self-deployable, self-stiffening, and retractable origami-based arrays for spacecraft[J]. AIAA Journal202058(7): 3221-3228.
106 WANG S, WU J S, YAN P, et al. Design of deployable circular structures based on Miura origami pattern[J]. Mechanism and Machine Theory2023186: 105350.
107 YNCHAUSTI C, ROUBICEK C, ERICKSON J, et al. Hexagonal twist origami pattern for deployable space arrays[J]. ASME Open Journal of Engineering20221: 011041.
108 DELEO A A, O’NEIL J, YASUDA H, et al. Origami-based deployable structures made of carbon fiber reinforced polymer composites[J]. Composites Science and Technology2020191: 108060.
109 XIAO L P, XU Z, WANG K, et al. Modular design of space expandable capsule based on origami-inspired structures and stretchable mechanism[C]∥ASME 2021 International Mechanical Engineering Congress and Exposition. New York: ASME, 2022.
110 WANG C L, GUO H W, LIU R Q, et al. A programmable origami-inspired space deployable structure with curved surfaces[J]. Engineering Structures2022256: 113934.
111 LEE M A. Tunable bistability of origami-based mechanical metamaterials[C]∥55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017.
112 ZHANG X Z, GAO C J, CHEN W J, et al. Design of thick-panel origami-inspired deployable protective shields for spacecraft[J]. Thin-Walled Structures2024202: 112069.
113 FAN Z P, WANG R G, HUANG H B, et al. Design and analysis of an origami-inspired modular thick-panel deployable structure[J]. International Journal of Mechanical Sciences2024282: 109579.
114 徐鑫. 基于厚板折纸的空间可展机构几何设计与运动分析[D]. 天津: 天津工业大学, 2023.
  XU X. Geometric design and kinematic analysis of spatial deployable mechanisms based on thick-panel origami[D]. Tianjin: Tianjin Polytechnic University, 2023 (in Chinese).
115 贾怀博. 基于Flasher折纸的平面可展结构设计研究[D]. 太原: 太原科技大学, 2024.
  JIA H B. Design of planar deployable structures based on flasher[D]. Taiyuan: Taiyuan University of Science and Technology, 2024 (in Chinese).
116 PENG R, CHIRIKJIAN G S. A methodology for thick-panel origami pattern design[J]. Mechanism and Machine Theory2023189: 105423.
117 ZHANG X Z, CHEN W J. Programmable thick-panel Miura-ori for ultra-large planar antennas with one-degree-of-freedom[J]. Aerospace Science and Technology2024151: 109311.
118 DING S Y, SUN M, LI Y, et al. Novel deployable panel structure integrated with thick origami and morphing bistable composite structures[J]. Materials202215(5): 1942.
119 PENG R, CHIRIKJIAN G S. Morphable thick-panel origami[J]. Mechanism and Machine Theory2024192: 105528.
120 ZHANG X Z, CHEN W J. Folding a flat rectangular plate of uniform-thickness panels using Miura-ori[J]. International Journal of Mechanical Sciences2023257: 108570.
121 SUN H Z, ZHAO C, WANG K, et al. Shape editing of kirigami-inspired thick-panel deployable structure[J]. Mechanism and Machine Theory2024191: 105471.
122 WANG C, ZHANG D W, LI J L, et al. Kirigami-inspired thick-panel deployable structures[J]. International Journal of Solids and Structures2022251: 111752.
123 ZHAI Z R, WU L L, JIANG H Q. Mechanical metamaterials based on origami and kirigami[J]. Applied Physics Reviews20218(4): 041319.
124 LIU J, OU H F, ZENG R, et al. Fabrication, dynamic properties and multi-objective optimization of a metal origami tube with Miura sheets[J]. Thin-Walled Structures2019144: 106352.
125 SILVERBERG J L, NA J H, EVANS A A, et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom[J]. Nature Materials201514(4): 389-393.
126 ZHAO S Y, ZHANG Y Y, ZHANG Y H, et al. Graphene origami-enabled auxetic metallic metamaterials: An atomistic insight[J]. International Journal of Mechanical Sciences2021212: 106814.
127 SOLANKI A, RANGANATH M S, SINGHOLI A K S. Review on advancements in 3D/4D printing for enhancing efficiency, cost-effectiveness, and quality[J]. International Journal on Interactive Design and Manufacturing (IJIDeM)2024. .
128 CHEN Z C, LIN Y T, SALEHI H, et al. Advanced fabrication of mechanical metamaterials based on micro/nanoscale technology[J]. Advanced Engineering Materials202325(22): 2300750.
129 RAYALA S R K. Designing and modelling multi-stable origami structures for adaptive applications[R]. Phoenix: Arizona State University, 2024.
Outlines

/