Electronics and Electrical Engineering and Control

A high-speed laser backbone node deployment approach for next-generation GNSS

  • Bingbing XU ,
  • Kai HAN ,
  • Richang DONG ,
  • Wenbin GONG ,
  • Qianyi REN
Expand
  • 1.University of Chinese Academy of Sciences,Beijing 100049,China
    2.Innovation Academy for Microsatellites,Chinese Academy of Sciences,Shanghai 201304,China
E-mail: Spg3@163.com

Received date: 2024-09-02

  Revised date: 2024-10-21

  Accepted date: 2024-12-19

  Online published: 2024-12-30

Supported by

National Natural Science Foundation of China(12104485)

Abstract

With the development of inter-satellite link technology, laser inter-satellite links have garnered widespread attention due to its unique advantages. Compared to the current Global Navigation Satellite System (GNSS) that uses microwave inter-satellite links, laser-based inter-satellite communication offers advantages in terms of both ranging accu racy and communication bandwidth. Consequently, the network configuration of the next-generation GNSS will transition from relying entirely on microwave inter-satellite links to primarily using laser inter-satellite links. However, during the transition phase, where both laser and microwave links coexist, the deployment of high-speed laser nodes is a critical technical challenge that need to be addressed. To solve the challenge, this paper proposes a Multi-objective Discrete Binary Selection Algorithm (M-DBSA) based on the non-dominated sorting genetic algorithm with the elite strategy. Firstly, a high-medium-low inter-satellite visibility model is established based on analysis of inter-satellite geometric constraints and antenna elevation angle constraints. Secondly, to enhance the communication capability of inter-satellite links in hybrid GNSS, an optimized joint strategy is obtained using the M-DBSA algorithm. Finally, the experiment results demonstrate that compared to other algorithms, the proposed algorithm can further improve the coverage from laser backbone nodes to low-orbit satellites, shorten the high-speed laser backbone nodes’ revisit time of low-orbit satellites by about 49%, and maintain a better distribution of communication hops.

Cite this article

Bingbing XU , Kai HAN , Richang DONG , Wenbin GONG , Qianyi REN . A high-speed laser backbone node deployment approach for next-generation GNSS[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(9) : 331124 -331124 . DOI: 10.7527/S1000-6893.2024.31124

References

1 YAN J G, SONG G P, LEUS R, et al. Rolling weight-matching methods for the inter-satellite link assignment in global navigation satellite systems[J]. GPS Solutions202226(2): 38.
2 YAN Z B, ZHAO K L, LI W F, et al. Topology design for GNSSs under polling mechanism considering both inter-satellite links and ground-satellite links[J]. IEEE Transactions on Vehicular Technology202271(2): 2084-2097.
3 HAN K, XU B B, SHAO F W, et al. An adaptive topology optimization strategy for intersatellite links in GNSS[J]. IEEE Transactions on Aerospace and Electronic Systems202258(6): 5894-5907.
4 YAN J G, XING L N, WANG P, et al. A scheduling strategy to inter-satellite links assignment in GNSS[J]. Advances in Space Research202167(1): 198-208.
5 BERCEAU P, TAYLOR M, KAHN J, et al. Space-time reference with an optical link?[J]. Classical and Quantum Gravity201633(13): 135007.
6 GIORGI G, KROESE B, MICHALAK G. Future GNSS constellations with optical inter-satellite links. Preliminary space segment analyses?[C]?∥2019 IEEE Aerospace Conference. Piscataway: IEEE Press, 2019.
7 SUROF J, POLIAK J, CALVO R M, et al. Laboratory characterization of optical inter-satellite links for future GNSS[C]∥Proceedings of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+2019). Manassas Institute of Navigation, 2019.
8 POLIAK J, CALVO R M, SUROF J, et al. Laboratory demonstrator of optical inter-satellite links for the Kepler system[C]∥Proceedings of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+2018). Manassas Institute of Navigation, 2018.
9 DEPREZ C, GIORGI G. Operational envelope and link scheduling for inter-satellite links in next-generation GNSSs[C]∥2021 IEEE Aerospace Conference. Piscataway: IEEE Press, 2021.
10 MICHALAK G, GIORGI G, DEPREZ C. Enhanced orbit determination of GNSSs with optical inter-satellite links[C]∥Proceedings of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+2021). Manassas Institute of Navigation, 2021.
11 杨飞, 陈迪俊, 韩申生, 等. 基于光学技术的新一代全球导航定位定时系统架构[J]. 中国激光202451(11): 1101018.
  YANG F, CHEN D J, HAN S S, et al. New generation of global navigation positioning and timing system based on optical technology?[J]. Chinese Journal of Lasers202451(11): 1101018 (in Chinese).
12 YANG Y X, MAO Y, REN X, et al. Demand and key technology for a LEO constellation as augmentation of satellite navigation systems?[J]. Satellite Navigation20245(1): 11.
13 LIU R Z, SHENG M, LUI K S, et al. Capacity analysis of two-layered LEO/MEO satellite networks[C]∥2015 IEEE 81st Vehicular Technology Conference (VTC Spring). Piscataway: IEEE Press, 2015.
14 LI Y, WANG Y, ZHANG Q Y, et al. TCDS: A time-relevant graph based topology control in triple-layer satellite networks[J]. IEEE Wireless Communications Letters20209(3): 424-428.
15 HUANG Y X, FENG B H, DONG P, et al. A multi-objective based inter-layer link allocation scheme for MEO/LEO satellite networks[C]∥2022 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway: IEEE Press, 2022.
16 YAN Z B, GU G Y, ZHAO K L, et al. Integer linear programming based topology design for GNSSs with inter-satellite links[J]. IEEE Wireless Communications Letters202110(2): 286-290.
17 XU B B, HAN K, REN Q Y, et al. An optimized strategy for inter-satellite links assignments in GNSS[J]. Advances in Space Research202371(1): 720-730.
18 董明佶, 林宝军, 刘迎春, 等. 基于多目标模拟退火算法的导航卫星激光星间链路拓扑动态优化[J]. 中国激光201845(7): 0706004.
  DONG M J, LIN B J, LIU Y C, et al. Topology dynamic optimization for inter-satellite laser links of navigation satellite based on multi-objective simulated annealing method[J]. Chinese Journal of Lasers201845(7): 0706004 (in Chinese).
19 ZENG L C, LU X C, BAI Y, et al. Topology design algorithm for optical inter-satellite links in future navigation satellite networks[J]. GPS Solutions202226(2): 57.
20 丁文, 左勇, 叶小舟, 等. 一种基于局部激光高速节点骨干网络的星间链路拓扑规划与仿真优化方法[J]. 全球定位系统202045(6): 10-15.
  DING W, ZUO Y, YE X Z, et al. A method of topology planning and simulation optimization of inter-satellite link(ISL) based on local laser high-speed node backbone network[J]. GNSS World of China202045(6): 10-15 (in Chinese).
21 王呈倬. 导航星座激光/微波星间链路协同网络拓扑与路由研究[D]. 长沙: 国防科技大学, 2019.
  WANG C Z. Research on topology and routing of cooperative network of laser/microwave inter-satellite link in navigation constellation[D]. Changsha: National University of Defense Technology, 2019 (in Chinese).
22 邵丰伟. 卫星导航系统星间链路网络建链路由技术研究[D]. 北京: 中国科学院大学, 2017, 18-20.
  SHAO F W. Research on assignment and routing algorithms of navigation system inner-satellite link network [D]. Beijing: University of Chinese Academy of Sciences, 2017, 18-20 (in Chinese).
23 KENNEDY J, EBERHART R. Particle swarm optimization?[C]∥Proceedings of ICNN'95-International Conference on Neural Networks. Piscataway: IEEE Press, 1995.
24 KENNEDY J, EBERHART R C. A discrete binary version of the particle swarm algorithm[C]∥1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation. Piscataway: IEEE Press, 1997.
25 COELLO C A C, PULIDO G T, LECHUGA M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation20048(3): 256-279.
26 DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ?[J]. IEEE Transactions on Evolutionary Computation20026(2): 182-197.
27 刘灿由, 张峰, 王兴, 等. 导航星座高速星间链路的设计分析[C]∥第十一届中国卫星导航年会论文集——S13自主导航, 2020.
  LIU C Y, ZHANG F, WANG X, et al. Design and analysis of high speed inter satellite link in navigation constellation[C]∥Proceedings of the Eleventh China Satellite Navigation Conference-S13 Automatic Navigation, 2020 (in Chinese).
28 MCDONNELL J R, REYNOLDS R G, FOGEL D B. Adapting crossover in evolutionary algorithms[C]∥Evolutionary Programming Ⅳ: Proceedings of the Fourth Annual Conference on Evolutionary Programming. Cambridge: MIT Press, 1995: 367-384.
29 NEUBAUER A. A theoretical analysis of the non-uniform mutation operator for the modified genetic algorithm[C]∥Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97). Piscataway: IEEE Press, 1997.
30 ZHANG Q F, LI H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition?[J]. IEEE Transactions on Evolutionary Computation200711(6): 712-731.
31 NADIMI-SHAHRAKI M H, ZAMANI H, ASGHARI VARZANEH Z, et al. A systematic review of the whale optimization algorithm: Theoretical foundation, improvements, and hybridizations[J]. Archives of Computational Methods in Engineering202330(7): 4113-4159.
32 SHANG K, ISHIBUCHI H, HE L J, et al. A survey on the hypervolume indicator in evolutionary multiobjective optimization?[J]. IEEE Transactions on Evolutionary Computation202125(1): 1-20.
Outlines

/