Articles

Countermeasures against uncooperative drones based on swarm encirclement

  • Ziyi ZONG ,
  • Xin DONG ,
  • Zhan TU ,
  • Jinwu XIANG
Expand
  • 1.School of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China
    2.Hangzhou International Innovation Institute of Beihang University,Beihang University,Hangzhou 311115,China
    3.Institute of Unmanned System,Beihang University,Beijing 100191,China
    4.Tianmushan Laboratory,Hangzhou 311115,China

Received date: 2024-10-08

  Revised date: 2024-11-04

  Accepted date: 2024-12-10

  Online published: 2024-12-18

Supported by

National Level Project

Abstract

Uncooperative drones pose a serious threat to low-altitude safety, and traditional countermeasures against drones struggle to effectively handle the safe recovery of non-cooperative drones. This paper proposes a countermeasure method for tracking and capturing non-cooperative drones using multiple drones. The trajectory of the non-cooperative drones is predicted based on Bézier curves. Using the predicted trajectory, the center of the drone formation is treated as a virtual leader. A real-time trajectory planning method for the formation center is proposed, considering visibility constraints in obstacle-rich environments for capturing dynamic targets. Subsequently, affine transformations are utilized to alter the formation shape, enhancing the ability to navigate through narrow areas while ensuring safe flight of the drone cluster and stable tracking and capture of the target. Finally, simulations conducted in various obstacle environments demonstrate the feasibility of the proposed method.

Cite this article

Ziyi ZONG , Xin DONG , Zhan TU , Jinwu XIANG . Countermeasures against uncooperative drones based on swarm encirclement[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(11) : 531349 -531349 . DOI: 10.7527/S1000-6893.2024.31349

References

[1] ISHII T, MIURA J, HAYASHI K. Enhancing human-robot collaborative object search through human behavior observation and dialog[C]?∥2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Piscataway: IEEE Press, 2023.
[2] MAHDOUI N, FRéMONT V, NATALIZIO E. Communicating multi-UAV system for cooperative SLAM-based exploration[J]. Journal of Intelligent & Robotic Systems202098(2): 325-343.
[3] KLEMAS V V. Coastal and environmental remote sensing from unmanned aerial vehicles: An overview[J]. Journal of Coastal Research2015315: 1260-1267.
[4] YAACOUB J P, NOURA H, SALMAN O, et al. Security analysis of drones systems: Attacks, limitations, and recommendations[J]. Internet of Things202011: 100218.
[5] WATANABE K, SAKAI R, TANAKA S, et al. Electromagnetic interference with the mobile communication devices in unmanned aerial vehicles and its countermeasures[J]. IEEE Access202412: 11642-11652.
[6] JEON G H, LEE J H, SUNG Y S, et al. Cooperative friendly jamming techniques for drone-based mobile secure zone[J]. Sensors202222(3): 865.
[7] GAO M, ZHANG L F, SHEN L M, et al. Exploring practical acoustic transduction attacks on inertial sensors in MDOF systems[J]. IEEE Transactions on Mobile Computing202423(5): 3539-3557.
[8] MUHAIDHEEN M, MURALIDHARAN S, ALAGAMMAL S, et al. Design and development of unmanned aerial vehicle (UAV) directed artillery prototype for defense application[J]. International Journal of Electrical and Electronics Research202210(4): 1086-1091.
[9] TAILLANDIER M, PEIFFER R, DARUT G, et al. Duality safety/efficiency for laser directed energy weapon applications[C]?∥High Power Lasers: Technology and Systems, Platforms, Effects VI. SPIE, 2023.
[10] RUAN W Y, SUN Y B, DENG Y M, et al. Hawk-pigeon game tactics for unmanned aerial vehicle swarm target defense[J]. IEEE Transactions on Industrial Informatics202319(12): 11619-11629.
[11] 刘峰, 魏瑞轩, 周凯, 等. 基于群体意志统一的无人机协同围捕策略[J]. 北京航空航天大学学报202248(11): 2241-2249.
  LIU F, WEI R X, ZHOU K, et al. Multi-UAV round up strategy based on unity of group will[J]. Journal of Beijing University of Aeronautics and Astronautics202248(11): 2241-2249 (in Chinese).
[12] CHANG K, XIA Y Q, HUANG K L, et al. Moving target tracking of a UAV formation[C]?∥2016 Chinese Control and Decision Conference (CCDC). Piscataway: IEEE Press, 2016.
[13] VAROL G, LAPTEV I, SCHMID C. Long-term temporal convolutions for action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence201840(6): 1510-1517.
[14] BATZ T, WATSON K, BEYERER J. Recognition of dangerous situations within a cooperative group of vehicles[C]?∥2009 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE Press, 2009.
[15] LEFKOPOULOS V, MENNER M, DOMAHIDI A, et al. Interaction-aware motion prediction for autonomous driving: A multiple model Kalman filtering scheme[J]. IEEE Robotics and Automation Letters20216(1): 80-87.
[16] HAN G X, MA J W, HUANG S Y, et al. Few-shot object detection with fully cross-transformer?[C]?∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022.
[17] CHENG B W, MISRA I, SCHWING A G, et al. Masked-attention mask transformer for universal image segmentation[C]?∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022.
[18] HAN Z C, ZHANG R B, PAN N, et al. Fast-tracker: A robust aerial system for tracking agile target in cluttered environments[C]?∥2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2021.
[19] HUANG J H, ZENG J, CHI X M, et al. Velocity obstacle for polytopic collision avoidance for distributed multi-robot systems[J]. IEEE Robotics and Automation Letters20238(6): 3502-3509.
[20] VAN DEN BERG J, SNAPE J, GUY S J, et al. Reciprocal collision avoidance with acceleration-velocity obstacles[C]?∥2011 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2011.
[21] ARUL S H, MANOCHA D. DCAD: Decentralized collision avoidance with dynamics constraints for agile quadrotor swarms[J]. IEEE Robotics and Automation Letters20205(2): 1191-1198.
[22] PARK J, KIM J, JANG I, et al. Efficient multi-agent trajectory planning with feasibility guarantee using relative Bernstein polynomial[C]?∥2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020.
[23] ZHOU X, WANG Z P, WEN X Y, et al. Decentralized spatial-temporal trajectory planning for multicopter swarms[DB/OL]. arXiv preprint: 2106.12481, 2021.
[24] GAO Y M, JI J L, WANG Q H, et al. Adaptive tracking and perching for quadrotor in dynamic scenarios[J]. IEEE Transactions on Robotics202340: 499-519.
[25] DONG X W, HU G Q. Time-varying formation tracking for linear multiagent systems with multiple leaders[J]. IEEE Transactions on Automatic Control201762(7): 3658-3664.
[26] REZAEE H, ABDOLLAHI F. A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots[J]. IEEE Transactions on Industrial Electronics201461(1): 347-354.
[27] BALCH T, ARKIN R C. Behavior-based formation control for multirobot teams[J]. IEEE Transactions on Robotics and Automation199814(6): 926-939.
[28] LI S L, CHEN Y Z, ZHAN J Y. Event-triggered consensus control for multi-agent systems with Markov switching topologies[C]?∥2021 40th Chinese Control Conference (CCC). Piscataway: IEEE Press, 2021.
[29] ALONSO-MORA J, MONTIJANO E, SCHWAGER M, et al. Distributed multi-robot formation control among obstacles: A geometric and optimization approach with consensus[C]?∥2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2016.
[30] REZAEE H and ABDOLLAHI F. Mobile robots cooperative control and obstacle avoidance using potential field[C]?∥2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Piscataway: IEEE Press, 2011.
[31] ZHOU D J, WANG Z J, SCHWAGER M. Agile coordination and assistive collision avoidance for quadrotor swarms using virtual structures[J]. IEEE Transactions on Robotics201834(4): 916-923.
[32] CHEN W C, KAWANISHI M, LU C Y, et al. Cooperative load transportation of multi-drones based on disturbance observer and formation control[J]. IEEE Access202412: 77393-77405.
[33] KLAUSEN K, MEISSEN C, FOSSEN T I, et al. Cooperative control for multirotors transporting an unknown suspended load under environmental disturbances?[J]. IEEE Transactions on Control Systems Technology202028(2): 653-660.
[34] GERTZ E M, WRIGHT S J. Object-oriented software for quadratic programming[J]. ACM Transactions on Mathematical Software200329(1): 58-81.
[35] ZHOU X, WANG Z P, YE H K, et al. EGO-planner: An ESDF-free gradient-based local planner for quadrotors[J]. IEEE Robotics and Automation Letters20216(2): 478-485.
[36] MUELLER M W, HEHN M, D’ANDREA R. A computationally efficient motion primitive for quadrocopter trajectory generation[J]. IEEE Transactions on Robotics201531(6): 1294-1310.
[37] PRESS W H, TEUKOLSKY S A, VETTERLING W T, et al. Numerical Recipes 3rd Edition: The Art of Scientific Computing[M]. New York: Cambridge University Press, 2009:481-482.
[38] JI J L, PAN N, XU C, et al. Elastic tracker: A spatio-temporal trajectory planner for flexible aerial tracking[C]?∥2022 International Conference on Robotics and Automation (ICRA). New York: ACM, 2022.
Outlines

/