ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Terminal guidance law under multiple constraints of high-order reshaping of relative range profile
Received date: 2024-10-15
Revised date: 2024-10-31
Accepted date: 2024-12-06
Online published: 2024-12-10
Supported by
National Natural Science Foundation of China(U24B20157);Aeronautical Science Foundation of China(2024Z066051001);Fundamental Research Funds for the Central Universities;Beijing Natural Science Foundation(4242041)
To address the problem of homing guidance with impact angle constraint or impact time constraint under the condition of limited field-of-view of missile’s seeker, a multi-constraint homing guidance law design method based on high-order reshaping of relative range profile is proposed. Firstly, an auxiliary variable containing only field-of-view angle is constructed for the two-dimensional plane homing guidance model, and a high-order polynomial with the reference missile-target relative range profile as the auxiliary variable is designed. Secondly, some profile parameters are solved by using the initial and terminal boundary conditions of guidance, and the expression forms of the parameters to be solved are given by performing terminal constraint integration on the auxiliary variable transformation equation. Furthermore, the impact angle constrained guidance law and impact time constrained guidance law driven by reference profile are given based on model transformation. At the same time, to ensure continuous attenuation of the seeker’s field-of-view, the conditions for the profile parameters to be satisfied are given. On this basis, the explicit representation form of the available sets of angle constraint and time constraint are derived. Different from the existing guidance law with profile reshaping, this paper designs a general n-order range profile reshaping guidance method, which can obtain wider achievable constraint sets, and is also convenient for designers/engineers to analyze the reshaping guidance law performance under arbitrary orders. In addition, to solve the profile deviation problem in the ideal profile reshaping process under uncertainty or disturbance, the guidance law is compensated for profile tracking deviation and is robustly corrected, thereby improving the multi-constraint guidance accuracy under complex working conditions. Finally, the effectiveness and robustness of the designed guidance law are verified through numerical simulation comparison analysis under various working conditions and Monte Carlo tests.
Qinglei HU , Shuxin ZHANG , Tuo HAN , Qingyun WANG . Terminal guidance law under multiple constraints of high-order reshaping of relative range profile[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(6) : 531405 -531405 . DOI: 10.7527/S1000-6893.2024.31405
1 | LEE Y I, KIM S H, TAHK M J. Optimality of linear time-varying guidance for impact angle control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 2802-2817. |
2 | TSALIK R, SHIMA T. Optimal guidance around circular trajectories for impact-angle interception[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(6): 1278-1291. |
3 | HOU Z W, LIU L, WANG Y J, et al. Terminal impact angle constraint guidance with dual sliding surfaces and model-free target acceleration estimator[J]. IEEE Transactions on Control Systems Technology, 2017, 25(1): 85-100. |
4 | JEON I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology, 2006, 14(2): 260-266. |
5 | HU Q L, HAN T, XIN M. Sliding-mode impact time guidance law design for various target motions[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(1): 136-148. |
6 | LEE C H, KIM T H, TAHK M J. Interception angle control guidance using proportional navigation with error feedback[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(5): 1556-1561. |
7 | 闫梁, 赵继广, 沈怀荣, 等. 带末端碰撞角约束的三维联合偏置比例制导律设计[J]. 航空学报, 2014, 35(7): 1999-2010. |
YAN L, ZHAO J G, SHEN H R, et al. Three-dimensional united biased proportional navigation guidance law for interception of targets with angular constraints?[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1999-2010 (in Chinese). | |
8 | TEKIN R, ERER K S. Switched-gain guidance for impact angle control under physical constraints[J]. Journal of Guidance Control Dynamics, 2015, 38(2): 205-216. |
9 | 黎克波, 廖选平, 梁彦刚, 等. 基于纯比例导引的拦截碰撞角约束制导策略[J]. 航空学报, 2020, 41(S2): 724277. |
LI K B, LIAO X P, LIANG Y G, et al. Guidance strategy with impact angle constraint based on pure proportional navigation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724277 (in Chinese). | |
10 | 郭建国, 韩拓, 周军, 等. 基于终端角度约束的二阶滑模制导律设计[J]. 航空学报, 2017, 38(2): 320217. |
GUO J G, HAN T, ZHOU J, et al. Second-order sliding-mode guidance law with impact angle constraint[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 320217 (in Chinese). | |
11 | 盛永智, 甘佳豪, 张成新. 弹道可调的落角约束分数阶滑模制导律设计[J]. 航空学报, 2023, 44(7): 327073. |
SHENG Y Z, GAN J H, ZHANG C X. Fractional order sliding mode guidance law design with trajectory adjustable and terminal angular constraint[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 327073 (in Chinese). | |
12 | 尤浩, 常新龙, 赵久奋, 等. 带角度约束的三维积分二阶滑模拦截制导律[J]. 宇航学报, 2024, 45(4): 590-602. |
YOU H, CHANG X L, ZHAO J F, et al. Three-dimensional integral second-order sliding mode interception guidance law with impact angle constraints[J]. Journal of Astronautics, 2024, 45(4): 590-602 (in Chinese). | |
13 | WANG C Y, DONG W, WANG J N, et al. Impact-angle-constrained cooperative guidance for salvo attack[J]. Journal of Guidance Control Dynamics, 2022, 45(4): 684-703. |
14 | 胡锡精, 黄雪梅. 具有碰撞角约束的三维圆轨迹制导律[J]. 航空学报, 2012, 33(3): 508-519. |
HU X J, HUANG X M. Three-dimensional circular guidance law with impact angle constraints[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3): 508-519 (in Chinese). | |
15 | HE S M, SONG T, LIN D F. Impact angle constrained integrated guidance and control for maneuvering target interception[J]. Journal of Guidance Control Dynamics, 2017, 40(10): 2653-2661. |
16 | HAN T, HU Q L, SHIN H S, et al. Sensor-based robust incremental three-dimensional guidance law with terminal angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(11): 2016-2030. |
17 | HU Q L, HAN T, XIN M. Analytical solution for nonlinear three-dimensional guidance with impact angle and field-of-view constraints[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 3423-3433. |
18 | HAN T, SHIN H S, HU Q L, et al. Differentiator-based incremental three-dimensional terminal angle guidance with enhanced robustness[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(5): 4020-4032. |
19 | HAN T, HU Q L, XIN M. Three-dimensional approach angle guidance under varying velocity and field-of-view limit without using line-of-sight rate[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(11): 7148-7159. |
20 | GUO Y H, LI X, ZHANG H J, et al. Data-driven method for impact time control based on proportional navigation guidance[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(5): 955-966. |
21 | DONG W, WANG C Y, WANG J N, et al. Varying-gain proportional navigation guidance for precise impact time control[J]. Journal of Guidance, Control, and Dynamics, 2022, 46(3): 535-552. |
22 | YU J L, SHI Z X, DONG X W, et al. Impact time consensus cooperative guidance against the maneuvering target: theory and experiment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4590-4603. |
23 | KUMAR S R, GHOSE D. Impact time guidance for large heading errors using sliding mode control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 3123-3138. |
24 | CHO D, KIM H J, TAHK M J. Nonsingular sliding mode guidance for impact time control?[J]. Journal of Guidance, Control, and Dynamics, 2015, 39(1): 61-68. |
25 | SALEEM A, RATNOO A. Lyapunov-based guidance law for impact time control and simultaneous arrival[J]. Journal of Guidance, Control, and Dynamics, 2015, 39(1): 164-173. |
26 | HU Q L, HAN T, XIN M. New impact time and angle guidance strategy via virtual target approach[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(8): 1755-1765. |
27 | 刘远贺, 黎克波, 朱云冲, 等. 基于误差动力学的全局非线性精确飞行时间控制制导律设计[J]. 中国科学(技术科学), 2023, 53(4): 565-575. |
LIU Y H, LI K B, ZHU Y C, et al. Global nonlinear exact impact time control guidance design based on error dynamics[J]. Scientia Sinica (Technologica), 2023, 53(4): 565-575 (in Chinese). | |
28 | ERER K S, TEKIN R, HONG H C. Computational impact-time guidance with biased proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 2024, 47(6): 1249-1255. |
29 | WANG Z Q, HU Q L, HAN T, et al. Two-stage guidance law with constrained impact via circle involute[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2): 1301-1316. |
30 | 武建, 赵斌, 韩拓. 一种弹间协同的目标察打时间可调制导方法[J]. 宇航学报, 2023, 44(7): 1084-1093. |
WU J, ZHAO B, HAN T. Missile-cooperation target detection and interception time adjustable guidance law[J]. Journal of Astronautics, 2023, 44(7): 1084-1093 (in Chinese). | |
31 | HAN T, HU Q L, WANG Q Y, et al. Constrained 3-D trajectory planning for aerial vehicles without range measurement[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(10): 6001-6013. |
32 | HAN T, HU Q L, XIN M. Analytical solution of field-of-view limited guidance with constrained impact and capturability analysis[J]. Aerospace Science and Technology, 2020, 97: 105586. |
33 | HU Q L, CAO R H, HAN T, et al. Field-of-view limited guidance with impact angle constraint and feasibility analysis[J]. Aerospace Science and Technology, 2021, 114: 106753. |
34 | 郭宗易, 杨晓宏, 胡冠杰, 等. 落角与视场约束制导控制一体化策略[J]. 宇航学报, 2022, 43(12): 1676-1685. |
GUO Z Y, YANG X H, HU G J, et al. Integrated guidance and control strategy with constraints of impact angle and field of view[J]. Journal of Astronautics, 2022, 43(12): 1676-1685 (in Chinese). | |
35 | KIM T H, PARK B G, TAHK M J. Bias-shaping method for biased proportional navigation with terminal-angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(6): 1810-1816. |
36 | ZHANG Y A, WANG X L, WU H L. Impact time control guidance law with field of view constraint[J]. Aerospace Science and Technology, 2014, 39: 361-369. |
37 | PARK B G, KIM T H, TAHK M J. Range-to-go weighted optimal guidance with impact angle constraint and seeker’s look angle limits[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(3): 1241-1256. |
38 | 黄诘, 张友安, 刘永新. 一种有撞击角和视场角约束的运动目标的偏置比例导引算法[J]. 宇航学报, 2016, 37(2): 195-202. |
HUANG J, ZHANG Y A, LIU Y X. A biased proportional guidance algorithm for moving target with impact angle and field-of-view constraints[J]. Journal of Astronautics, 2016, 37(2): 195-202 (in Chinese). | |
39 | KIM H G, KIM H J. Backstepping-based impact time control guidance law for missiles with reduced seeker field-of-view[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 82-94. |
40 | 李博皓, 安旭曼, 杨晓飞, 等. 攻击角度约束下的分布式强化学习制导方法[J]. 宇航学报, 2022, 43(8): 1061-1069. |
LI B H, AN X M, YANG X F, et al. A distributed reinforcement learning guidance method under impact angle constraints[J]. Journal of Astronautics, 2022, 43(8): 1061-1069 (in Chinese). | |
41 | 李昊键, 刘远贺, 梁彦刚, 等. 考虑视场角约束的碰撞角控制预设性能制导律[J]. 航空学报, 2023, 44(15): 528764. |
LI H J, LIU Y H, LIANG Y G, et al. Prescribed performance guidance law with field-of-view and impact angle constraints[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528764 (in Chinese). |
/
〈 |
|
〉 |