special column

Research on fluidic thrust vectoring nozzle: Recent developments and future trends

  • Jinglei XU ,
  • Shuai HUANG ,
  • Ruifeng PAN ,
  • Yuqi ZHANG
Expand
  • 1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    2.State Key Laboratory of Mechanics and Control of Aeronautics and Astronautics Structures,Nanjing 210016,China

Received date: 2024-09-18

  Revised date: 2024-10-09

  Accepted date: 2024-11-19

  Online published: 2024-12-05

Supported by

National Science and Technology Major Project of China (2017-Ⅴ-0004-0054, 2019-Ⅱ-0007-0027, Y2022-Ⅱ-0005-0008);China Postdoctoral Science Foundation(2022M721598);Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB214);Natural Science Foundation of Jiangsu Province(BK20230891)

Abstract

Thrust vectoring technology is a key technology for future aircraft, especially high-maneuverability aircraft. The core component of the technology is the thrust vectoring nozzle. The fluidic thrust vectoring nozzle achieves airflow deflection at the nozzle outlet, and has many revolutionary advantages. It can further derive various functions such as short distance/vertical takeoff and landing and reversing thrust to adapt to more diverse application scenarios. Through decades of research, the fluidic thrust vectoring nozzle has gradually gone through stages such as conceptual conception, preliminary exploration, mechanism research, and engineering experiments, continuously improving its technological maturity and developing towards preliminary engineering applications. This paper focuses on introducing the research achievements of representative domestic and foreign researchers on various fluidic thrust vectoring nozzle in recent years. It explores the development trends and future research priorities of fluidic thrust vectoring nozzle, and points out that it is necessary to further strengthen the research on the mechanism of the internal flow field, overcome key technologies such as multi-objective and multi-disciplinary comprehensive optimization, and the overall matching of the aircraft, engine and fluidic thrust vectoring nozzle. By promoting engineering applications, it is expected to provide a reference for the application of fluidic thrust vectoring nozzle technology.

Cite this article

Jinglei XU , Shuai HUANG , Ruifeng PAN , Yuqi ZHANG . Research on fluidic thrust vectoring nozzle: Recent developments and future trends[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(8) : 631216 -631216 . DOI: 10.7527/S1000-6893.2024.31216

References

1 王海峰. 战斗机推力矢量关键技术及应用展望[J]. 航空学报202041(6): 524057.
  WANG H F. Key technologies and future applications of thrust vectoring on fighter aircraft[J]. Acta Aeronautica et Astronautica Sinica202041(6): 524057 (in Chinese).
2 崔祚, 汪阳生. 飞行器推力矢量喷管研究综述[J]. 飞航导弹2021(12): 158-167.
  CUI Z, WANG Y S. Review of research on thrust vectoring nozzles for aircraft [J]. Aerodynamic Missile Journal2021(12): 158-167 (in Chinese).
3 HUANG S, XU J L, YU K K, et al. Design and experimental study of a bypass dual throat nozzle with the ability of short/vertical takeoff and landing[J]. Aerospace Science and Technology2022121: 107301.
4 王玉新. 喷气发动机轴对称推力矢量喷管[M]. 北京: 国防工业出版社, 2006: 4, 5, 27, 48.
  WANG Y X. Axial symmetric thrust vectoring nozzle for jet engines?[M]. Beijing: National Defense Industry Press, 2006: 4, 5, 27, 48 (in Chinese).
5 WALKER S. Lessons learned in the development of a national cooperative program: AIAA-1997-3348[R]. Reston: AIAA, 1997.
6 连永久. 射流推力矢量控制技术研究[J]. 飞机设计200828(2): 19-24.
  LIAN Y J. Fluidic thrust vectoring techniques research[J]. Aircraft Design200828(2): 19-24 (in Chinese).
7 贾东兵, 周吉利, 邓洪伟. 固定几何气动矢量喷管技术综述[J]. 航空发动机201238(6): 29-33, 42.
  JIA D B, ZHOU J L, DENG H W. Summary of fluidic control fixed geometry nozzle technology?[J]. Aeroengine201238(6): 29-33, 42 (in Chinese).
8 肖中云, 江雄, 牟斌, 等. 流体推力矢量技术研究综述[J]. 实验流体力学201731(4): 8-15.
  XIAO Z Y, JIANG X, MOU B, et al. Advances in fluidic thrust vectoring technique research[J]. Journal of Experiments in Fluid Mechanics201731(4): 8-15 (in Chinese).
9 史经纬, 王占学, 梁爽. 激波矢量控制喷管技术分析[J]. 航空动力2023(2): 71-74.
  SHI J W, WANG Z X, LIANG S. Technical analysis of shock vector control nozzle[J]. Aerospace Power2023(2): 71-74 (in Chinese).
10 ZMIJANOVIC V, LEGER L, LAGO V, et al. Experimental and numerical study of thrust-vectoring effects by transverse gas injection into a propulsive axisymmetric C-D nozzle: AIAA-2012-3874[R]. Reston: AIAA, 2012.
11 ZMIJANOVIC V, LAGO V, SELLAM M, et al. Thrust shock vector control of an axisymmetric conical supersonic nozzle via secondary transverse gas injection[J]. Shock Waves201424(1): 97-111.
12 ZMIJANOVIC V, LEGER L, DEPUSSAY E, et al. Experimental-numerical parametric investigation of a rocket nozzle secondary injection thrust vectoring?[J]. Journal of Propulsion and Power201632(1): 196-213.
13 史经纬, 王占学, 刘增文, 等. 二次流喷口形状对激波矢量控制喷管推力矢量特性影响[J]. 航空动力学报201328(12): 2678-2684.
  SHI J W, WANG Z X, LIU Z W, et al. Effects of secondary injection forms on thrust vector performance of shock vector controlling nozzle[J]. Journal of Aerospace Power201328(12): 2678-2684 (in Chinese).
14 史经纬, 王占学, 周莉, 等. 激波矢量喷管二次流喷口形态影响研究[J]. 工程热物理学报201435(11): 2173-2177.
  SHI J W, WANG Z X, ZHOU L, et al. Influence of secondary injection configuration on performance of shock vector nozzle[J]. Journal of Engineering Thermophysics201435(11): 2173-2177 (in Chinese).
15 史经纬. 固定几何气动矢量喷管流动机理及性能评估技术研究[D]. 西安: 西北工业大学, 2015.
  SHI J W. Investigation on flow mechanism and performance estimation of fixed-geometric thrust vectoring nozzle[D]. Xi’an: Northwestern Polytechnical University, 2015 (in Chinese).
16 SHI J W, WANG Z X, ZHANG X B, et al. Investigation on a hybrid SVC nozzle and coupling performance estimation with aero-engine: AIAA-2017-5059[R]. Reston: AIAA, 2017.
17 LIANG S, SHI J W, WANG Z X. Influence of aft deck on the flow characteristics of a serpentine shock vector control nozzle[J]. Transactions of Nanjing University of Aeronautics and Astronautics202340(1): 13-24.
18 肖中云, 江雄, 陈作斌, 等. 新型二维推力矢量喷管数值模拟[J]. 北京航空航天大学学报201238(7): 895-899.
  XIAO Z Y, JIANG X, CHEN Z B, et al. Numerical simulation of a new-style 2D thrust vectoring nozzle[J]. Journal of Beijing University of Aeronautics and Astronautics201238(7): 895-899 (in Chinese).
19 肖中云, 顾蕴松, 江雄, 等. 一种基于引射效应的流体推力矢量新技术[J]. 航空学报201233(11): 1967-1974.
  XIAO Z Y, GU Y S, JIANG X, et al. A new fluidic thrust vectoring technique based on ejecting mixing effects[J]. Acta Aeronautica et Astronautica Sinica201233(11): 1967-1974 (in Chinese).
20 顾蕴松, 李斌斌, 程克明. 基于主动流动控制的射流矢量偏转技术[J]. 实验力学201227(1): 87-92.
  GU Y S, LI B B, CHENG K M. On the jet vector deflection based on active flow control technique[J]. Journal of Experimental Mechanics201227 (1): 87-92 (in Chinese).
21 曹永飞. 射流推力矢量控制[D]. 南京: 南京航空航天大学, 2012.
  CAO Y F. Jet thrust vector control[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese).
22 韩杰星. 流体矢量喷管内外流耦合研究[D]. 南京: 南京航空航天大学, 2018.
  HAN J X. A study for inner-outer flow coupling of the fluidic thrust vector nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese).
23 SHI N X, GU Y S, ZHOU Y H, et al. Experimental investigation on the transient process of jet deflection controlled by passive secondary flow[J]. Journal of Visualization202225(5): 967-981.
24 ZHOU Y H, GU Y S, LI L K, et al. Research on fluidic thrust vector technology based on passive secondary flow with dual inclined walls under low subsonic speed[J]. Experimental Thermal and Fluid Science2024155: 111200.
25 CHI S Q, GU Y S. Experimental investigation on jet vector deflection jumping phenomenon of coanda effect nozzle[J]. Applied Sciences202212(15): 7567.
26 冯潮, 顾蕴松, 方瑞山, 等. 水下无源流体推力矢量喷管流动特性研究[J/OL]. 实验流体力学, (2022-12-27)[2024-11-19]. .
  FENG C, GU Y S, FANG R S, et al. Research on flow characteristics of underwater passive fluidic thrust vectoring nozzle[J/OL]. Journal of Experiments in Fluid Mechanics, (2022-12-27) [2024-11-19]. (in Chinese).
27 赵雄. 基于无源流体推力矢量喷管的飞行器控制技术实验研究[D]. 南京: 南京航空航天大学, 2018.
  ZHAO X. Experimental study on aircraft control technology based on passive fluid thrust vectoring nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese).
28 龚东升, 顾蕴松, 周宇航, 等. 基于微型涡喷发动机热喷流的无源流体推力矢量喷管的控制规律[J]. 航空学报202041(10): 123609.
  GONG D S, GU Y S, ZHOU Y H, et al. Control law of passive fluid thrust vector nozzle based on thermal jet of micro turbojet engine[J]. Acta Aeronautica et Astronautica Sinica202041(10): 123609 (in Chinese).
29 龚东升. 基于微型涡喷发动机的无源流体推力矢量喷管的研究[D]. 南京: 南京航空航天大学, 2020.
  GONG D S. Research on passive fluid thrust vector nozzle based on micro turbojet engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese).
30 王怡, 顾蕴松, 周宇航, 等. 分段式无源流体推力矢量喷管线性控制特性研究[J/OL]. 实验流体力学, (2023-12-05) [2024-11-19]. .
  WANG Y, GU Y S, ZHOU Y H, et al. Study on linear control characteristics of segmented passive fluid thrust vector nozzle[J/OL]. Journal of Experiments in Fluid Mechanics, (2023-12-05) [2024-11-19]. (in Chinese).
31 DEERE K, BERRIER B, FLAMM J, et al. Computational study of fluidic thrust vectoring using separation control in a nozzle: AIAA-2003-3803?[R]. Reston: AIAA, 2003.
32 DEERE K, BERRIER B, FLAMM J, et al. A computational study of a new dual throat fluidic thrust vectoring nozzle concept: AIAA-2005-3502[R]. Reston: AIAA, 2005.
33 FLAMM J D, DEERE K A, MASON M L, et al. Experimental study of an axisymmetric dual throat fluidic thrust vectoring nozzle for a supersonic aircraft application: AIAA-2007-5084[R]. Reston: AIAA, 2007.
34 李明. 双喉道气动矢量喷管特性研究[D]. 南京: 南京航空航天大学, 2011.
  LI M. Research on the characteristics of double throat aerodynamic vector nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese).
35 范志鹏, 徐惊雷, 郭帅. 次流通道对双喉道气动矢量喷管的性能影响研究[J]. 推进技术201435(9): 1174-1180.
  FAN Z P, XU J L, GUO S. Effects of secondary injection pipe on dual throat nozzle thrust vectoring performances[J]. Journal of Propulsion Technology201435(9): 1174-1180 (in Chinese).
36 范志鹏, 徐惊雷, 汪阳生. 下游喉道对双喉道气动矢量喷管气动性能的影响[J]. 航空动力学报201530(3): 580-587.
  FAN Z P, XU J L, WANG Y S. Effects of downstream throat on aerodynamic performance of dual throat nozzle[J]. Journal of Aerospace Power201530(3): 580-587 (in Chinese).
37 顾瑞. 新型双喉道气动矢量喷管机理与关键技术研究[D]. 南京: 南京航空航天大学, 2013.
  GU R. Research on the key technology of new dual throat fluidic vectoring thrust nozzle?[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese).
38 GU R, XU J L, GUO S. Experimental and numerical investigations of a bypass dual throat nozzle[J]. Journal of Engineering for Gas Turbines and Power2014136(8): 084501.
39 GU R, XU J L. Effects of cavity on the performance of dual throat nozzle during the thrust-vectoring starting transient process[J]. Journal of Engineering for Gas Turbines and Power2014136(1): 014502.
40 林泳辰. 新型流体矢量喷管的应用研究[D]. 南京: 南京航空航天大学, 2019.
  LIN Y C. Research on the practical application of a new type of fluid vectoring nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese).
41 黄帅, 徐惊雷, 牛彦沣, 等. 具有垂直起降功能的喉道偏移式气动矢量喷管及控制方法: CN105134407A[P]. 2015-12-09.
  HUANG S, XU J L, NIU Y F, et al.Throat-shifting fluidic vectoring nozzle with vertical takeoff and landing capability and its control method: CN105134407A?[P]. 2015-12-09 (in Chinese).
42 黄帅. 新型气动矢量喷管的拓展研究[D]. 南京: 南京航空航天大学, 2017.
  HUANG S. Research on the expansion of a new pneumatic vector nozzle?[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese).
43 黄帅, 徐惊雷, 潘睿丰, 等. 具有短距/垂直起降功能的机械-气动复合式矢量喷管: CN112228242B[P]. 2021-12-14.
  HUANG S, XU J L, PAN R F, et al. A mechanical pneumatic hybrid vectoring nozzle with short takeoff and landing/vertical takeoff and landing capabilities: CN112228242B[P]. 2021-12-14 (in Chinese).
44 黄帅, 徐惊雷, 宋光韬, 等. 基于准轴对称喉道偏移式气动矢量喷管的旋转垂直起降喷管及其设计方法: CN112443422A[P]. 2021-03-05.
  HUANG S, XU J L, SONG G T, et al. Rotating vertical takeoff and landing nozzle based on quasi axisymmetric throat offset aerodynamic vectoring nozzle and its design method: CN112443422A?[P]. 2021-03-05 (in Chinese).
45 肖焱毅, 徐惊雷, 黄帅, 等. 基于非轴对称拉瓦尔喷管的双轴承旋转矢量喷管及其设计方法: CN118148792A[P]. 2024-06-07.
  XIAO Y Y, XU J L, HUANG S, et al. Double bearing rotating vectoring nozzle based on non axisymmetric Laval nozzle and its design method: CN118148792A?[P]. 2024-06-07 (in Chinese).
46 李瑶, 徐惊雷, 潘睿丰, 等. 双轴承旋转喷管型面设计及数值模拟研究[J]. 推进技术202445(5): 100-111.
  LI Y, XU J L, PAN R F, et al. Geometric design and numerical simulation study of two bearing swivel nozzle[J]. Journal of Propulsion Technology202445(5): 100-111 (in Chinese).
47 李瑶. 超椭圆型面双喉道推力矢量喷管设计方法及应用探究[D]. 南京: 南京航空航天大学, 2024.
  LI Y. Design method and application exploration of super elliptical double throat thrust vectoring nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2024 (in Chinese).
48 黄帅. 新型多功能气动矢量喷管的研究[D]. 南京: 南京航空航天大学, 2022.
  HUANG S. Research on a new multifunctional aerodynamic vectoring nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022 (in Chinese).
49 ZHANG Y Q, XU J L, PAN R F, et al. Numerical investigation of short takeoff and landing exhaust system using bypass dual throat nozzle?[J]. Aerospace Science and Technology2023138: 108316.
50 张玉顶, 徐惊雷, 潘睿丰, 等 . 反推改型气动矢量喷管设计及数值模拟[J]. 航空动力学报202439(12): 20220905.
  ZHANG Y D, XU J L, PAN R F, et al. Design and numerical simulation of a fluidic vectoring nozzle with thrust reverser[J]. Journal of Aerospace Power202439(12): 20220905 (in Chinese).
51 张玉顶, 徐惊雷, 黄帅, 等. 具有反推功能的喉道偏移式气动矢量喷管: CN116291943A[P]. 2023-06-23.
  ZHANG Y D, XU J L, HUANG S, et al. A throat offset aerodynamic vectoring nozzle with reverse thrust function: CN116291943A[P]. 2023-06-23 (in Chinese).
52 张玉顶. 具有反推功能的新型气动矢量喷管研究[D]. 南京: 南京航空航天大学, 2023.
  ZHANG Y D. Research on a new pneumatic vector nozzle with reverse propulsion function?[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2023 (in Chinese).
53 黄帅, 徐惊雷, 汪阳生, 等. 具有非对称后体型面的喉道偏移式气动矢量喷管: CN109723570A[P]. 2019-05-07.
  HUANG S, XU J L, WANG Y S, et al. Throat offset aerodynamic vectoring nozzle with asymmetric back profile: CN109723570A[P]. 2019-05-07 (in Chinese).
54 潘睿丰, 徐惊雷, 黄帅, 等. 一种出口具有锯齿形固体突片的喉道偏移式气动矢量喷管: CN110080907A[P]. 2019-08-02.
  PAN R F, XU J L, HUANG S, et al. A throat offset aerodynamic vectoring nozzle with tab modification: CN110080907A[P]. 2019-08-02 (in Chinese).
55 蒋晶晶, 徐惊雷, 黄帅, 等. 一种平行四边形截面的喉道偏移式气动矢量喷管: CN109779780A[P]. 2019-05-21.
  JIANG J J, XU J L, HUANG S, et al. A throat offset aerodynamic vectoring nozzle with a parallelogram cross-section: CN109779780A?[P]. 2019-05-21 (in Chinese).
56 成前, 徐惊雷, 黄帅, 等. 一种椭圆形喉道偏移式气动矢量喷管的设计方法: CN113374595A[P]. 2021-09-10.
  CHENG Q, XU J L, HUANG S, et al. Design method of elliptical throat offset aerodynamic vectoring nozzle: CN113374595A[P]. 2021-09-10 (in Chinese).
57 李瑶, 徐惊雷, 黄帅, 等. 一种双喉道推力矢量喷管的改进方法: CN114483368A[P]. 2022-05-13.
  LI Y, XU J L, HUANG S, et al. An improved method of dual throat thrust vectoring nozzle: CN114483368A[P]. 2022-05-13 (in Chinese).
58 蒋晶晶, 徐惊雷, 黄帅, 等.? 平行四边形截面的旁路式双喉道气动矢量喷管数值研究[J]. 航空动力学报202035(4): 805-814.
  JIANG J J, XU J L, HUANG S, et al. Numerical study of bypass dual throat nozzle with parallelogram cross-section[J]. Journal of Aerospace Power202035(4): 805-814 (in Chinese).
59 PAN R F, XU J L, ZHANG Y Q, et al. Analysis of mixing enhancement ability of bypass dual throat nozzle with single/multi-tabs[J]. Heat Transfer Engineering, (2024-07-03) [2024-09-11]. .
60 HUANG S, XU J L, YU K K, et al. Numerical study of a trapezoidal bypass dual throat nozzle[J]. Chinese Journal of Aeronautics202336(3): 42-62.
61 PAN R F, XU J L, ZHANG Y Q, et al. Numerical simulation and experiment of a bypass dual throat nozzle with tab modification?[J]. Aerospace Science and Technology2024144: 108816.
62 黄帅, 徐惊雷, 俞凯凯, 等. 一种机械扰动式喉道偏移式气动矢量喷管: CN110657043A[P]. 2020-01-07.
  HUANG S, XU J L, YU K K, et al. A mechanical disturbance throat offset aerodynamic vectoring nozzle: CN110657043A[P]. 2020-01-07 (in Chinese).
63 汪阳生. 新型气动矢量喷管流动机理与智能调节研究[D]. 南京: 南京航空航天大学, 2020.
  WANG Y S. Research on the flow mechanism and intelligent regulation of a new pneumatic vector nozzle?[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese).
64 林泳辰, 徐惊雷, 韩杰星, 等. 气动推力矢量无舵面飞翼的飞行实验[J]. 航空动力学报201934(3): 701-707.
  LIN Y C, XU J L, HAN J X, et al. Flight test of a fluidic thrust vectoring flying wing without rudder[J]. Journal of Aerospace Power201934(3): 701-707 (in Chinese).
65 卿太木, 廖华琳, 朱川. 轴对称双喉道流体控制矢量喷管三维数值模拟[J]. 燃气涡轮试验与研究200922(3): 14-18.
  QING T M, LIAO H L, ZHU C. 3D computational study of axisymmetric dual-throat fluidic thrust-vectoring nozzles?[J]. Gas Turbine Experiment and Research200922(3): 14-18 (in Chinese).
66 卿太木, 王恒, 廖华琳. 轴对称双喉道气动矢量喷管内特性数值模拟[J]. 燃气涡轮试验与研究201427(2): 14-20.
  QING T M, WANG H, LIAO H L. Internal performance numerical study on geometrical parameters of axisymmetric dual-throat fluidic thrust-vectoring nozzles[J]. Gas Turbine Experiment and Research201427(2): 14-20 (in Chinese).
67 额日其太, 邓双国, 李家军. 扩张型双喉道喷管的流动特性和起动方法[J]. 北京航空航天大学学报201137(3): 320-324.
  ERIQITAI, DENG S G, LI J J. Flow characteristic and starting method for divergent dual throat nozzle[J]. Journal of Beijing University of Aeronautics and Astronautics201137(3): 320-324 (in Chinese).
68 王健, 额日其太. 扩张段注气对扩张型双喉道喷管起动的影响研究[J]. 航空工程进展20112(3): 318-322, 329.
  WANG J, ERIQITAI. Effect of injection at divergent section on starting problem of divergent dual throat nozzle[J]. Advances in Aeronautical Science and Engineering20112(3): 318-322, 329 (in Chinese).
69 母鸿瑞, 杨青真, 邓雪姣, 等. 双喉道喷管与飞翼布局无人机气动数值研究[J]. 航空计算技术201444(1): 90-93.
  MU H R, YANG Q Z, DENG X J, et al. Research on dual throat fluidic thrust vectoring nozzle and flying wing layou UAV?[J]. Aeronautical Computing Technique201444(1): 90-93 (in Chinese).
70 余斌, 邓雪娇, 杨青真, 等. 双喉道气动矢量喷管气动及红外特性研究[J]. 教练机2015(1): 16-23.
  YU B, DENG X J, YANG Q Z, et al. Investigation on aerodynamics and infrared radiation characteristics of duplex-throat aerodynamic vector nozzle?[J]. Trainer2015(1): 16-23 (in Chinese).
Outlines

/