Material Engineering and Mechanical Manufacturing

Configuration optimization method of three-branch robot for truss holding

  • Yifan WANG ,
  • Xiyun GUO ,
  • Shiyuan JIA ,
  • Gang CHEN ,
  • Mo REN
Expand
  • 1.School of Intelligent Engineering and Automation,Beijing University of Posts and Telecommunications,Beijing 100876,China
    2.Space Systems Department Equipment Division,Beijing 100094,China

Received date: 2024-08-01

  Revised date: 2024-08-27

  Accepted date: 2024-11-18

  Online published: 2024-12-04

Supported by

National Natural Science Foundation of China(62103058)

Abstract

With the advancement of space exploration and technology, the on-orbit construction of large spacecraft has become a key research focus. These spacecraft typically use large space trusses as support structures and rely on space robots to carry out various on-orbit transportation and assembly tasks. Due to the characteristics of the truss structures, which have high flexibility and low damping, vibrations in the truss structure can be easily induced by time-varying dynamics when the space robot climbs and grasps the truss. This can affect the stability of load transportation. To address the holding configuration optimization problem for a three-branchrobot climbing a truss, the “truss-three-branch robot” composite system was used as the research object to analyze its contact and collision characteristics. Evaluation metrics for climbing stability, holding balance, and operability were constructed for the holding configuration. The NSGA-Ⅱ (Non-dominated Sorting Genetic Algorithm-Ⅱ) multi-objective optimization algorithm was used to establish a holding configuration optimization model with the joint angles of the three-branch robot as decision variables. This approach provided an optimized method for holding configuration that balanced contact collision excitation suppression, task efficiency, and robot operability. Finally, the effectiveness of this method was evaluated through comparative simulation experiments, offering analytical means and solutions for the smooth planning of truss climbing motions in large spacecraft.

Cite this article

Yifan WANG , Xiyun GUO , Shiyuan JIA , Gang CHEN , Mo REN . Configuration optimization method of three-branch robot for truss holding[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(7) : 431033 -431033 . DOI: 10.7527/S1000-6893.2024.31033

References

1 ZHANG Z B, LI X H, LI Y Y, et al. Modularity, reconfigurability, and autonomy for the future in spacecraft: a review?[J]. Chinese Journal of Aeronautics202336(7): 282-315.
2 SHE Y C, LI S, LIU Y F, et al. In-orbit robotic assembly mission design and planning to construct a large space telescope?[J]. Journal of Astronomical Telescopes, Instruments, and Systems20206(1): 017002.
3 LI D L, ZHONG L, ZHU W, et al. A survey of space robotic technologies for on-orbit assembly?[J]. Space: Science & Technology2022(4): 1-13.
4 侯新宇, 张帆, 黄攀峰, 等. 空间大型桁架天线姿态与振动一体化控制[J]. 航空学报202344(S1): 727552.
  HOU X Y, ZHANG F, HUANG P F, et al. Integrated attitude and vibration control of space large antenna with truss[J]. Acta Aeronautica et Astronautica Sinica202344(S1): 727552 (in Chinese).
5 KOPYLOV V, SHARDYKO I, TITOV V. Robotization of in-orbit large-scale structure assembly[C]?∥KATALINIC B. Proceedings of 34th International DAAAM Symposium on Intelligent Manufacturing and Automation. 2023: 111-120.
6 王明明, 罗建军, 袁建平, 等. 空间在轨装配技术综述[J]. 航空学报202142(1): 523913.
  WANG M M, LUO J J, YUAN J P, et al. In-orbit assembly technology: review[J]. Acta Aeronautica et Astronautica Sinica202142(1): 523913 (in Chinese).
7 YANG S L, MENG D S, JIANG P, et al. Kinematic analysis and gait planning of a three-branch relative robot for on-orbit assembly[C]?∥Proceedings of the 2021 IEEE International Conference on Robotics and Biomimetics. 2021: 1884-1889.
8 YANG S L, WU Z G, MENG D S, et al. Coupled dynamics and gait optimization of the spatial structure of robot walking assembly[J]. Chinese Journal of Theoretical and Applied Mechanics202355(7): 1548-1558.
9 YOSHIDA K, SASHIDA N. Modeling of impact dynamics and impulse minimization for space robots[C]∥Proceedings of the 1993 IEEE International Conference on Intelligent Robots and Systems. 1993: 2064-2069.
10 LIN Z C, PATEL R V, BALAFOUTIS C A. Impact reduction for redundant manipulators using augmented impedance control[J]. Journal of Robotic Systems199512(5): 301-313.
11 华卫江, 章定国. 柔性机器人系统碰撞动力学建模[J]. 机械工程学报200843(12): 222-228.
  HUA W J, ZHANG D G. Modeling of impact dynamics of flexible robots[J]. Journal of Mechanical Engineering200843(12): 222-228 (in Chinese).
12 ZHENG Y F, HEMAMI H. Mathematical modeling of a robot collision with its environment[J]. Journal of Robotic Systems19852(3): 289-307.
13 陈钢, 贾庆轩, 孙汉旭, 等. 空间机器人目标捕获过程中碰撞运动分析[J]. 机器人2010(3): 146-152.
  CHEN G, JIA Q X, SUN H X, et al. Analysis on impact motion of space robot in the object capturing process[J]. Robot2010(3): 146-152 (in Chinese).
14 朱永杰. 机器人碰撞动力学分析与轨迹优化[D]. 天津: 天津工业大学, 2020: 11-43.
  ZHU Y J. Robot collision dynamics analysis and trajectory optimization?[D]. Tianjin: Tiangong University, 2020: 11-43 (in Chinese).
15 XU R N, LUO J J, WANG M M. Optimal grasping pose for dual-arm space robot cooperative manipulation based on global manipulability?[J]. Acta Astronautica2021183: 300-309.
16 孟光, 韩亮亮, 张崇峰. 空间机器人研究进展及技术挑战[J]. 航空学报202142(1): 523963.
  MENG G, HAN L L, ZHANG C F. Research progress and technical challenges of space robot[J]. Acta Aeronautica et Astronautica Sinica202142(1): 523963 (in Chinese).
17 YANG G L, CHEN I M. Task-based optimization of modular robot configurations: minimized degree-of-freedom approach[J]. Mechanism and Machine Theory200035(4): 517-540.
18 ARTIGAS J, BALACHANDRAN R, RIECKE C, et al. Kontur-2: force-feedback teleoperation from the international space station[C]?∥Proceedings of the 2016 IEEE International Conference on Robotics and Automation. 2016: 1166-1173.
19 LI Q, ZHAO J. A universal approach for configuration synthesis of reconfigurable robots based on fault tolerant indices[J]. The Industrial Robot201239(1): 69-78.
20 MENG D S, WANG X Q, LIANG B. Safe configuration optimization of flexible joint manipulator based on equivalent model of head collision[J]. Robot201739(4): 523-531.
21 郭闻昊, 王天舒. 空间机器人抓捕目标星碰撞前构型优化[J]. 宇航学报201536(4): 390-396.
  GUO W H, WANG T S. Pre-impact configuration optimization for a space robot capturing target satellite[J]. Journal of Astronautics201536(4): 390-396 (in Chinese).
22 赵智远, 徐振邦, 何俊培, 等. 基于工作空间分析的9自由度超冗余串联机械臂构型优化[J]. 机械工程学报201955(21): 51-63.
  ZHAO Z Y, XU Z B, HE J P, et al. Configuration optimization of nine degree of freedom super-redundant serial manipulator based on workspace analysis[J]. Journal of Mechanical Engineering201955(21): 51-63 (in Chinese).
23 ZHANG B, LIANG B, WANG X Q, et al. Manipulability measure of dual-arm space robot and its application to design an optimal configuration[J]. Acta Astronautica2016128: 322-329.
24 AGUSTIAN I, DARATHA N, FAURINA R, et al. Robot manipulator control with inverse kinematics PD-pseudoinverse Jacobian and forward kinematics Denavit Hartenberg[DB/OL]. arXiv preprint: 2103. 10461, 2021.
25 金国光, 武光涛, 畅博彦, 等. 机械臂接触碰撞动力学分析[J]. 农业机械学报201647(11): 369-375.
  JIN G G, WU G T, CHANG B Y, et al. Dynamic analysis of manipulator with contact impact[J]. Transactions of the Chinese Society for Agricultural Machinery201647(11): 369-375 (in Chinese).
Outlines

/