ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Design of 3D inward-turning inlet considering cruising angle of attack
Received date: 2024-09-19
Revised date: 2024-10-12
Accepted date: 2024-11-27
Online published: 2024-11-29
Supported by
National Natural Science Foundation of China(U21B6003);China Postdoctoral Science Foundation(2022M712653)
Air-breathing hypersonic vehicles with the head intake system typically cruise at a specific angle of attack for higher lift-to-drag characteristics. However, this can cause the 3D inward-turning inlet, designed without considering the angle of attack, to operate at off-design conditions for extended periods, which results in a noticeable decline in inlet performance. To solve this problem, the Local-Turning Osculating Cones (LTOCs) method is extended from external flow to internal flow, and a 3D inward-turning inlet design method considering the cruising angle of attack is then proposed. In this method, the inward-turning inlet is divided into the shock-based and pressure-based segments, derived by specifying the incident 3D shock wave and the streamwise wall pressure distributions in each stream surface respectively. Numerical results demonstrate that the proposed method can accurately reproduce the preassigned shock waves and internal flowfield at Mach number 6, 27 km altitude, and 4° angle of attack, resulting in full mass flow capture. Compared with the inlet design without considering the angle of attack, the design considering the cruising angle of attack can improve the inviscid mass-flow-capture coefficient and the inviscid total pressure recovery coefficient at the throat section by 1.94% and by 6.56%, respectively, when the compression performances of two inlets are essentially identical. Under the viscous conditions, the mass-flow-capture coefficient is augmented by 1.90%, the total pressure recovery coefficient at the throat section is enhanced by 6.69%, and the total pressure recovery coefficient at the isolator’s exit section is elevated by 7.13%.
Xiaogang ZHENG , Zhancang HU , Zejun CAI , Chongguang SHI , Chengxiang ZHU , Yancheng YOU . Design of 3D inward-turning inlet considering cruising angle of attack[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(8) : 631233 -631233 . DOI: 10.7527/S1000-6893.2024.31233
1 | CHOI Y, YOST M F, LERNER E W, et al. Scramjet performance computed for a JP-7-fueled generic X-51 vehicle[J]. Journal of Propulsion and Power, 2022, 38(3): 348-358. |
2 | DING F, LIU J, SHEN C B, et al. An overview of waverider design concept in airframe/inlet integration methodology for air-breathing hypersonic vehicles[J]. Acta Astronautica, 2018, 152: 639-656. |
3 | VOLAND R T, HUEBNER L D, MCCLINTON C R. X-43A hypersonic vehicle technology development[J]. Acta Astronautica, 2006, 59(1-5): 181-191. |
4 | BERTIN J J, CUMMINGS R M. Fifty years of hypersonics: Where we’ve been, where we’re going[J]. Progress in Aerospace Sciences, 2003, 39(6-7): 511-536. |
5 | ZUO F Y, M?LDER S. Hypersonic wavecatcher intakes and variable-geometry turbine based combined cycle engines[J]. Progress in Aerospace Sciences, 2019, 106: 108-144. |
6 | 张堃元. 高超声速进气道曲面压缩技术综述[J]. 推进技术, 2018, 39(10): 2227-2235. |
ZHANG K Y. Review on curved surface compression technology of hypersonic inlet[J]. Journal of Propulsion Technology, 2018, 39(10): 2227-2235 (in Chinese). | |
7 | CHANG J T, LI N, XU K J, et al. Recent research progress on unstart mechanism, detection and control of hypersonic inlet[J]. Progress in Aerospace Sciences, 2017, 89: 1-22. |
8 | MA Y, GUO M M, TIAN Y, et al. Recent advances and prospects in hypersonic inlet design and intelligent optimization[J]. Aerospace Science and Technology, 2024, 146: 108953. |
9 | QIAO W Y, YU A Y, GAO W, et al. Design method with controllable velocity direction at throat for inward-turning inlets[J]. Chinese Journal of Aeronautics, 2019, 32(6): 1403-1415. |
10 | 王卫星, 朱婷, 张仁涛, 等. 高超声速内转式进气道型面流场重构[J]. 航空学报, 2020, 41(3): 123493. |
WANG W X, ZHU T, ZHANG R T, et al. Flow field reconstruction of hypersonic inward turning inlet based on configuration[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 123493 (in Chinese). | |
11 | SMART M K, TREXLER C A. Mach 4 performance of hypersonic inlet with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 2004, 20(2): 288-293. |
12 | SURAWEERA M V, SMART M K. Shock-tunnel experiments with a Mach 12 rectangular-to-elliptical shape-transition scramjet at offdesign conditions[J]. Journal of Propulsion and Power, 2009, 25(3): 555-564. |
13 | GOLLAN R J, SMART M K. Design of modular shape-transition inlets for a conical hypersonic vehicle[J]. Journal of Propulsion and Power, 2013, 29(4): 832-838. |
14 | 尤延铖, 梁德旺, 黄国平. 一种新型内乘波式进气道初步研究[J]. 推进技术, 2006, 27(3): 252-256. |
YOU Y C, LIANG D W, HUANG G P. Investigation of internal waverider-derived hypersonic inlet[J]. Journal of Propulsion Technology, 2006, 27(3): 252-256 (in Chinese). | |
15 | YOU Y C, LIANG D W. Design concept of three-dimensional section controllable internal waverider hypersonic inlet[J]. Science in China Series E: Technological Sciences, 2009, 52(7): 2017-2028. |
16 | ZHU C X, ZHANG H F, HU Z C, et al. Analysis on the low speed performance of an inward-turning multiduct inlet for turbine-based combined cycle engines[J]. International Journal of Aerospace Engineering, 2019, 2019(1): 6728387. |
17 | GUO F, LIU M, HE G Z, et al. Analysis and suppression of thrust trap for turbo-ramjet mode transition with the integrated optimal control method[J]. Aerospace, 2023, 10(8): 667. |
18 | 朱伟, 张堃元, 南向军. 壁面马赫数分布规律可控的新型内收缩基准流场设计方法[J]. 推进技术, 2013,34(4): 433-438. |
ZHU W, ZHANG K Y, NAN X J. Investigation on basic flowfield with controlled Mach number gradient for hypersonic inward turning inlets[J]. Journal of Propulsion Technology, 2013, 34(4): 433-438 (in Chinese). | |
19 | 李永洲, 张堃元, 孙迪. 马赫数可控的方转圆高超声速内收缩进气道试验研究[J]. 航空学报, 2016, 37(10): 2970-2979. |
LI Y Z, ZHANG K Y, SUN D. Experimental investigation on a hypersonic inward turning inlet of rectangular-to-circular shape with controlled Mach number distribution[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 2970-2979 (in Chinese). | |
20 | 王晓峰, 屈峰, 付俊杰, 等. 基于离散伴随的高超内转式进气道气动优化设计[J]. 航空学报, 2023, 44(19): 128352. |
WANG X F, QU F, FU J J, et al. Discrete adjoint-based aerodynamic design optimization for hypersonic inward turning inlet[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 128352 (in Chinese). | |
21 | MUSA O, HUANG G P, YU Z H. Assessment of new pressure-corrected design method for hypersonic internal waverider intake?[J]. Acta Astronautica, 2022, 201: 230-246. |
22 | MUSA O, HUANG G P, YU Z H. Evaluation of the pressure-corrected osculating axisymmetric flows method for designing hypersonic wavecatcher intakes with shape transition[J]. Journal of Aerospace Engineering, 2024, 37(3): 04024023. |
23 | 许耀宇, 黄河峡, 谭慧俊, 等. 高超声速飞行器前体/进气道一体化气动设计回顾与展望[J]. 空天技术, 2024(2): 15-38. |
XU Y Y, HUANG H X, TAN H J, et al. Retrospect and prospect on the aerodynamic integration of hypersonic aircraft forebody/inlet[J]. Aerospace Technology, 2024(2): 15-38 (in Chinese). | |
24 | QIAO W Y, YU A Y, WANG Y H. An inverse design method for non-uniform flow inlet with a given shock wave[J]. Acta Mathematicae Applicatae Sinica, English Series, 2019, 35(2): 287-304. |
25 | 郑晓刚, 李中龙, 李怡庆, 等. 曲锥前体/内转进气道一体化设计与试验研究[J]. 实验流体力学, 2019, 33(5): 29-36, 49. |
ZHENG X G, LI Z L, LI Y Q, et al. Integrated design and experimental research for curved fore-body and 3D inward turning inlet[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 29-36, 49 (in Chinese). | |
26 | XIONG B, FAN X Q, WANG Y. Design and evaluation of a conical hypersonic vehicle with an overturned aerodynamic layout?[J]. Aerospace Science and Technology, 2021, 118: 106979. |
27 | HE X Z, ZHOU Z, QIN S, et al. Design and experimental study of a practical osculating inward cone waverider inlet[J]. Chinese Journal of Aeronautics, 2016, 29(6): 1582-1590. |
28 | 乔文友, 余安远, 杨大伟, 等. 基于前体激波的内转式进气道一体化设计[J]. 航空学报, 2018, 39(10): 122078. |
QIAO W Y, YU A Y, YANG D W, et al. Integration design of inward-turning inlets based on forebody shock wave[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 122078 (in Chinese). | |
29 | LI Y Q, ZHENG X G, SHI C G, et al. Integration of inward-turning inlet with airframe based on dual-waverider concept[J]. Aerospace Science and Technology, 2020, 107: 106266. |
30 | 郑晓刚, 林德寿, 方啸雷, 等. 基于局部偏转吻切方法的背部进气高超飞行器一体化设计研究[J]. 空天技术, 2023(5): 1-10. |
ZHENG X G, LIN D S, FANG X L, et al. Research on the integration design of hypersonic vehicles with dorsal inlets based on the local-turning osculating cones method[J]. Aerospace Technology, 2023(5): 1-10 (in Chinese). | |
31 | KOTHARI A, TARPLEY C, MCLAUGHLIN T, et al. Hypersonic vehicle design using inward turning flow fields[C]∥ 32nd Joint Propulsion Conference and Exhibit.Reston: AIAA, 1996. |
32 | WALKER S, RODGERS F, PAULL A, et al. HyCAUSE flight test program[C]∥ 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
33 | 周航, 金志光. 非均匀来流下三维激波反问题的微元密切轴对称解法[J]. 航空学报, 2020, 41(12): 124035. |
ZHOU H, JIN Z G. Micro osculating axisymmetric flow method for 3D shock wave design under nonuniform flows[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124035 (in Chinese). | |
34 | ZHOU H, JIN Z G. A novel approach for inverse design of three-dimensional shock waves under non-uniform flows[J]. Acta Astronautica, 2020, 176: 324-331. |
35 | ZHENG X G, HU Z C, LI Y Q, et al. Local-turning osculating cones method for waverider design[J]. AIAA Journal, 2020, 58(8): 3499-3513. |
36 | ZHENG X G, LI Y Q, ZHU C X, et al. Multiple osculating cones’ waverider design method for ruled shock surfaces[J]. AIAA Journal, 2020, 58(2): 854-866. |
37 | JONES K, CENTER K. Waverider design methods for non-conical shock geometries[C]∥ 3rd Theoretical Fluid Mechanics Meeting. Reston: AIAA, 2002. |
38 | 乔文友, 余安远. 内转式进气道与飞行器前体的一体化设计综述[J]. 实验流体力学, 2019, 33(3): 43-59. |
QIAO W Y, YU A Y. Overview on integrated design of inward-turning inlet with aircraft forebody[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 43-59 (in Chinese). | |
39 | 谭慧俊, 黄河峡, 卜焕先, 等. 一种高超声速内转式进气道的内通道设计方法: CN105205220A[P]. 2015-12-30. |
TAN H J, HUANG H X, BU H X, et al. A design methodology for the internal flow path of the hypersonic inward-turning inlet: CN105205220A[P]. 2015-12-30 (in Chinese). | |
40 | BENEK J, SUCHYTA C, BABINSKY H. The effect of tunnel size on incident shock boundary layer interaction experiments[C]∥ 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013. |
/
〈 |
|
〉 |