Electronics and Electrical Engineering and Control

Close-range air combat model based on energy maneuverability and its applications

  • Henghui LI ,
  • Qianhui LIN ,
  • Taofeng HAN ,
  • Yang HE
Expand
  • AVIC Jiangxi Hongdu Aviation Industry Group,Nanchang 330024,China
E-mail: cauc_lhh@126.com

Received date: 2024-06-25

  Revised date: 2024-09-03

  Accepted date: 2024-11-18

  Online published: 2024-11-29

Abstract

At present, research on intelligent air combat at close range focuses on theories and algorithms, but lacks consideration in energy maneuverability. To integrate energy maneuverability into close-range air combat, an analysis of air combat theories is conducted, and a one-to-one expert system construction method for close-range air combat based on energy maneuverability is proposed. Based on energy maneuvering, decisions on static and dynamic situations of air combat are made to obtain the expected roll angle and normal G-force, and Proportion-Integration-Differentiation (PID) control algorithm is constructed to control the lateral and longitudinal directions of the model. That is, the model directly obtains the expected flight state through situational judgment, without the need to choose to execute a certain maneuver. The decision time step can be shortened as much as possible, which is beneficial for shortening the Observation-Orientation-Decision-Action (OODA) cycle time. Simulation results show that the established model achieves 58 victories in 60 simulations, which can fully demonstrate the maneuverability of the fighter as designed. The model construction method proposed has universality and prospects for application in close-range air combat teaching and training, Unmanned Aerial Vehicle (UAV) air combat, and other fields.

Cite this article

Henghui LI , Qianhui LIN , Taofeng HAN , Yang HE . Close-range air combat model based on energy maneuverability and its applications[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(7) : 330863 -330863 . DOI: 10.7527/S1000-6893.2024.30863

References

1 孙聪. 从空战制胜机理演变看未来战斗机发展趋势[J]. 航空学报202142(8): 525826.
  SUN C. Development trend of future fighter: A review of evolution of winning mechanism in air combat[J]. Acta Aeronautica et Astronautica Sinica202142(8): 525826 (in Chinese).
2 DARPA. ACE program’s AI agent transition from simulation to live flight [EB/OL]. (2023-02-13)[2024-04-27]. .
3 孙智孝, 杨晟琦, 朴海音, 等. 未来智能空战发展综述[J]. 航空学报202142(8): 525799.
  SUN Z X, YANG S Q, PIAO H Y, et al. A survey of air combat artificial intelligence[J]. Acta Aeronautica et Astronautica Sinica202142(8): 525799 (in Chinese).
4 XU G Y, LIU Q, ZHANG H. The application of situation function in differential game problem of the air combat[C]?∥2018 Chinese Automation Congress (CAC). Piscataway: IEEE Press, 2018: 1190-1195.
5 PARK H, LEE B Y, TAHK M J, et al. Differential game based air combat maneuver generation using scoring function matrix[J]. International Journal of Aeronautical and Space Sciences201617(2): 204-213.
6 ZHENG H Y, DENG Y, HU Y. Fuzzy evidential influence diagram and its evaluation algorithm[J]. Knowledge-Based Systems2017131: 28-45.
7 PAN Q, ZHOU D Y, HUANG J C, et al. Maneuver decision for cooperative close-range air combat based on state predicted influence diagram[C]?∥2017 IEEE International Conference on Information and Automation (ICIA). Piscataway: IEEE Press, 2017: 726-731.
8 ZHENG Z Q, DUAN H B. UAV maneuver decision-making via deep reinforcement learning for short-range air combat[J]. Intelligence Robotics20233(1): 76-94.
9 傅莉, 谢福怀, 孟光磊, 等. 基于滚动时域的无人机空战决策专家系统[J]. 北京航空航天大学学报201541(11): 1994-1999.
  FU L, XIE F H, MENG G L, et al. An UAV air-combat decision expert system based on receding horizon control[J]. Journal of Beijing University of Aeronautics and Astronautics201541(11): 1994-1999 (in Chinese).
10 王锐平, 高正红. 无人机空战仿真中基于机动动作库的决策模型[J]. 飞行力学200927(6): 72-75, 79.
  WANG R P, GAO Z H. Research on decision system in air combat simulation using maneuver library[J]. Flight Dynamics200927(6): 72-75, 79 (in Chinese).
11 王炫, 王维嘉, 宋科璞, 等. 基于进化式专家系统树的无人机空战决策技术[J]. 兵工自动化201938(1): 42-47.
  WANG X, WANG W J, SONG K P, et al. UAV air combat decision based on evolutionary expert system tree[J]. Ordnance Industry Automation201938(1): 42-47 (in Chinese).
12 李高垒, 马耀飞. 基于深度网络的空战态势特征提取[J]. 系统仿真学报201729(S1): 98-105.
  LI G L, MA Y F. Feature extraction algorithm of air combat situation based on deep neural networks[J]. Journal of System Simulation201729(S1): 98-105 (in Chinese).
13 TENG T H, TAN A H, TAN Y S, et al. Self-organizing neural networks for learning air combat maneuvers[C]?∥The 2012 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE Press, 2012: 1-8.
14 YANG Q M, ZHANG J D, SHI G Q, et al. Maneuver decision of UAV in short-range air combat based on deep reinforcement learning[J]. IEEE Access20208: 363-378.
15 LIU P, MA Y F. A deep reinforcement learning based intelligent decision method for UCAV air combat[C]?∥17th Asia Simulation Conferenve. Melaka: Federation of Asian Simulation Societies, 2017: 274-286.
16 PIAO H Y, SUN Z X, MENG G L, et al. Beyond-visual-range air combat tactics auto-generation by reinforcement learning[C]?∥2020 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE Press, 2020: 1-8.
17 付宇阳, 邓向阳, 朱子强, 等. 基于价值滤波的空战机动决策方法[J]. 航空学报202344(22): 628871.
  FU Y Y, DENG X Y, ZHU Z Q, et al. Value-filter based air-combat maneuvering optimization[J]. Acta Aeronautica et Astronautica Sinica202344(22): 628871 (in Chinese).
18 Koren Air Force. F-16C basic employment manual[R]. Seoul: Koren, 2005.
19 秦玮, 马雯, 张楠. 某大机动无人机基于飞行任务的敏捷性评估飞行科目设计与仿真[J]. 测控技术202039(11): 119-125.
  QIN W, MA W, ZHANG N. Design and simulation of flight courses for agility evaluation of high maneuver UAV based on flight mission[J]. Measurement & Control Technology202039(11): 119-125 (in Chinese).
20 王忠俊, 高浩. 关于飞机功能敏捷性尺度的计算[J]. 飞行力学199412(2): 15-20.
  WANG Z J, GAO H. On the calculation of fighter functional agility metrics[J]. Flight Dynamics199412(2): 15-20 (in Chinese).
21 方伟, 王玉佳, 徐涛, 等. 航空兵智能决策模型的评估方法[J]. 兵器装备工程学报202142(8): 126-132.
  FANG W, WANG Y J, XU T, et al. Research on evaluation method of aviation intelligent decision model[J]. Journal of Ordnance Equipment Engineering202142(8): 126-132 (in Chinese).
22 BOYD J R. The essence of winning and losing [EB/OL]. (2016-03-13)[2024-04-23]. .
23 冯宇鹏, 郭强, 赵创新, 等. 一种基于试飞数据的飞机稳定盘旋性能极限修正方法: CN114676501A[P]. 2022-06-28.
  FENG Y P, ZHAO Q, ZHAO C X, et al. A method for correcting the limit of stable hovering performance of aircraft based on test flight data: CN114676501A[P]. 2022-06-28 (in Chinese).
24 邱福生, 魏闯, 院老虎. 基于试飞数据的固定翼飞机盘旋性能仿真分析技术[J]. 科学技术与工程201919(30): 348-353.
  QIU F S, WEI C, YUAN L H. Simulation and analysis technology of fixed-wing aircraft circling performance based on flight test data[J]. Science Technology and Engineering201919(30): 348-353 (in Chinese).
Outlines

/