Electronics and Electrical Engineering and Control

Multi-objective scheduling optimization method for relay satellites considering user preferences

  • Weiwei CAI ,
  • Guohua WU ,
  • Hengwei LI ,
  • Qian YIN
Expand
  • 1.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
    2.School of Automation,Central South University,Changsha 410083,China
    3.School of Traffic & Transportation Engineering,Central South University,Changsha 410083,China

Received date: 2024-08-19

  Revised date: 2024-10-14

  Accepted date: 2024-11-22

  Online published: 2024-11-26

Supported by

Independent Innovation Science Foundation Project of National University of Defense Technology(24-ZZCX-KXKY-09)

Abstract

As China’s space station continues its long-term operations and scientific experiments, the demand for relay satellites has significantly increased, characterized by high frequency, multiple tasks, and diverse services. This complex demand urgently requires more flexible and efficient scheduling solutions for relay satellites to meet personalized service needs of users. This paper proposes an innovative application model for relay satellites, focusing on user preferences and allowing users to submit multiple optional service time windows, as well as specifying the desired execution antennas for each task. To address this new model, we construct a scheduling model for relay satellites that gives a comprehensive consideration of task completion rates, user satisfaction, antenna load balancing, and task priority. We also design a multi-objective scheduling algorithm based on the voting mechanism. This algorithm integrates various multi-objective scheduling methods and adaptively adjusts the weights of these methods during the optimization process, ensuring the selection of the optimal scheduling strategy at different stages. To validate the effectiveness of the proposed model and algorithm, extensive simulation experiments are conducted. The simulation results demonstrate that our method has significant advantages in solving multi-objective scheduling problems for relay satellites, showing remarkable improvements in user satisfaction and system service capacity compared to other multi-objective algorithms such as NSGA-Ⅱ, NSGA-Ⅲ, BiGE, GrEA, MOEA/D, and AMODSA.

Cite this article

Weiwei CAI , Guohua WU , Hengwei LI , Qian YIN . Multi-objective scheduling optimization method for relay satellites considering user preferences[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(8) : 331074 -331074 . DOI: 10.7527/S1000-6893.2024.31074

References

1 王磊, 姬涛, 郑军, 等. 中继卫星系统发展应用分析及建议[J]. 中国科学(技术科学)202252(2): 303-317.
  WANG L, JI T, ZHENG J, et al. Investigations and proposals for data relay satellite systems[J]. Scientia Sinica (Technologica)202252(2): 303-317 (in Chinese).
2 李夏苗, 陈新江, 伍国华, 等. 考虑断点续传的中继卫星调度模型及启发式算法[J]. 航空学报201940(11): 323233.
  LI X M, CHEN X J, WU G H, et al. Scheduling model and heuristic algorithm for tracking and data relay satellite considering breakpoint transmission[J]. Acta Aeronautica et Astronautica Sinica201940(11): 323233 (in Chinese).
3 王磊, 匡麟玲, 黄惠明. 基于时空特征的中继卫星系统业务模型[J]. 清华大学学报(自然科学版)201757(1): 55-60, 66.
  WANG L, KUANG L L, HUANG H M. TDRSS traffic model based on time and spatial characteristics[J]. Journal of Tsinghua University (Science and Technology)201757(1): 55-60, 66 (in Chinese).
4 CHEN M L, CHAI R, CHEN Q B. Joint route selection and resource allocation algorithm for data relay satellite systems based on energy efficiency optimization[C]∥2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). Piscataway IEEE Press, 2019.
5 HAJGHASSEM H, ROHI H, NASIRZADEH M. Investigation and analysis of tracking and data relay satellite systems (TDRSS)[C]∥21st International Communications Satellite Systems Conference and Exhibit. Reston: AIAA, 2003.
6 CHEN Y Y, HADJITHEODOSIOU M, CHEUNG C. Optimizing communications for constellation space missions[C]∥21st International Communications Satellite Systems Conference and Exhibit. Reston: AIAA, 2003.
7 DENG B Y, JIANG C X, KUANG L L, et al. Two-phase task scheduling in data relay satellite systems[J]. IEEE Transactions on Vehicular Technology201867(2): 1782-1793.
8 DENG B Y, JIANG C X, KUANG L L, et al. Preemptive dynamic scheduling algorithm for data relay satellite systems[C]∥2017 IEEE International Conference on Communications (ICC). Piscataway: IEEE Press, 2017.
9 WU G H, LUO Q Z, ZHU Y Q, et al. Flexible task scheduling in data relay satellite networks[J]. IEEE Transactions on Aerospace and Electronic Systems202258(2): 1055-1068.
10 CHEN X J, LI X M, WANG X W, et al. Task scheduling method for data relay satellite network considering breakpoint transmission[J]. IEEE Transactions on Vehicular Technology202170(1): 844-857.
11 贺川, 李亚晶, 丘震. 按需申请模式下的中继卫星任务规划模型与算法设计[J]. 中国空间科学技术201737(6): 46-55.
  HE C, LI Y J, QIU Z. Task programming models and algorithms of tracking and data relay satellite in application-on-demand[J]. Chinese Space Science and Technology201737(6): 46-55 (in Chinese).
12 LI Z L, CHEN X J, LUO Q Z, et al. Dynamic scheduling method for data relay satellite networks considering hybrid system disturbances[J]. Complex & Intelligent Systems202410(1): 1483-1499.
13 李恒伟, 罗启章, 顾轶, 等. 基于滚动时域策略的中继卫星多目标动态调度优化方法[J]. 航空学报202445(16): 329706.
  LI H W, LUO Q Z, GU Y, et al. Multi-objective dynamic scheduling optimization method for relay satellites based on rolling horizon strategy[J]. Acta Aeronautica et Astronautica Sinica202445(16): 329706 (in Chinese).
14 ROJANASOONTHON S, BARD J F, REDDY S D. Algorithms for parallel machine scheduling: A case study of the tracking and data relay satellite system[J]. Journal of the Operational Research Society200354(8): 806-821.
15 HE L J, LI J D, SHENG M, et al. Dynamic scheduling of hybrid tasks with time windows in data relay satellite networks[J]. IEEE Transactions on Vehicular Technology201968(5): 4989-5004.
16 刘润滋, 盛敏, 唐成圆, 等. 基于任务拆分聚合的中继卫星系统任务规划方法[J]. 通信学报201738(): 110-117.
  LIU R Z, SHENG M, TANG C Y, et al. Tasking planning based on task splitting and merging in relay satellite network[J]. Journal on Communications201738(Sup 1): 110-117 (in Chinese).
17 王志淋, 李新明. 跟踪与数据中继卫星系统资源调度优化问题[J]. 中国空间科学技术201535(1): 36-42.
  WANG Z L, LI X M. Resources scheduling optimization problem of the TDRSS[J]. Chinese Space Science and Technology201535(1): 36-42 (in Chinese).
18 方炎申, 陈英武, 王军民. 中继卫星多址链路调度问题的约束规划模型及算法研究[J]. 航天返回与遥感200627(4): 62-67.
  FANG Y S, CHEN Y W, WANG J M. Constraint programming model and algorithms for multiple access links scheduling of tracking and data relay satellite system (TDRSS)[J]. Spacecraft Recovery & Remote Sensing200627(4): 62-67 (in Chinese).
19 LIU R Z, SHENG M, XU C, et al. Antenna slewing time aware mission scheduling in space networks[J]. IEEE Communications Letters201721(3): 516-519.
20 WANG L, JIANG C X, KUANG L L, et al. High-efficient resource allocation in data relay satellite systems with users behavior coordination[J]. IEEE Transactions on Vehicular Technology201867(12): 12072-12085.
21 ZHU Y, ZHOU D, SHENG M, et al. Stochastic delay analysis for satellite data relay networks with heterogeneous traffic and transmission links[J]. IEEE Transactions on Wireless Communications202120(1): 156-170.
22 ZHOU D, SHENG M, LIU R Z, et al. Channel-aware mission scheduling in broadband data relay satellite networks[J]. IEEE Journal on Selected Areas in Communications201836(5): 1052-1064.
23 REDDY S D, BROWN W L. Single processor scheduling with job priorities and arbitrary ready and due times [M]. Beltsville: Computer Sciences Corporation, 198670(1): 1-11.
24 ZHUANG S F, YIN Z D, WU Z L, et al. The relay satellite scheduling based on artificial bee colony algorithm[C]∥2014 International Symposium on Wireless Personal Multimedia Communications (WPMC). Piscataway: IEEE Press, 2014.
25 开彩红, 肖瑶, 方青. 基于人工蜂群算法的中继卫星任务调度研究[J]. 电子与信息学报201537(10): 2466-2474.
  KAI C H, XIAO Y, FANG Q. Relay satellite scheduling based on artificial bee colony algorithm[J]. Journal of Electronics & Information Technology201537(10): 2466-2474 (in Chinese).
26 刘润滋, 马天赐, 吴伟华, 等. 基于分层强化学习的中继卫星网络任务动态调度方法[J]. 通信学报202344(7): 207-217.
  LIU R Z, MA T C, WU W H, et al. Dynamic task scheduling method for relay satellite networks based on hierarchical reinforcement learning[J]. Journal on Communications202344(7): 207-217 (in Chinese).
27 DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation201418(4): 577-601.
28 LI M Q, YANG S X, LIU X H. Bi-goal evolution for many-objective optimization problems[J]. Artificial Intelligence2015228: 45-65.
29 YANG S X, LI M Q, LIU X H, et al. A grid-based evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation201317(5): 721-736.
30 SHANG K, ISHIBUCHI H. A new hypervolume-based evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation202024(5): 839-852.
31 SUN Y N, YEN G G, YI Z. IGD indicator-based evolutionary algorithm for many-objective optimization problems[J]. IEEE Transactions on Evolutionary Computation201923(2): 173-187.
Outlines

/