Electronics and Electrical Engineering and Control

Cooperative guidance technique considering flight safety constraints of cluster wake vortex aerodynamic coupling effects

  • Duo ZHENG ,
  • Zhichen CHU ,
  • Defu LIN ,
  • Mingjun WEI ,
  • Siyi YUE
Expand
  • 1.School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
    2.Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory,Beijing Electro?Mechanical Engineering Institute,Beijing 100074,China

Received date: 2023-11-27

  Revised date: 2023-12-18

  Accepted date: 2024-01-17

  Online published: 2024-01-26

Supported by

National Natural Science Foundation of China(61903350);Ministry of Education’s Industry-University-Research Innovation Project(2021ZYA02002);Beijing Institute of Technology Research Fund Program for Young Scholars(3010011182130)

Abstract

The cooperative attack of clustered aircraft can increase the overall combat effectiveness, however, the dense flight of aircraft faces the flight safety problem caused by the wing wake vortex. Aiming at the aerodynamic coupling effect of the wake vortex in the process of cluster cooperative attack, which can cause the flight safety problem caused by the neighboring aircraft generating too large induced rolling moment, a cooperative attack strategy under the effect of wing wake vortex that can meet the safety constraints of the flight of the aircraft cluster is proposed. A dangerous area model of the wing wake vortex effect during the dense flight of aircraft clusters is established, and the induced speed of the wake vortex and its resulting induced roll moment law are analyzed, on which a wake vortex dangerous area avoidance maneuver strategy based on an improved artificial potential field repulsive function is designed. Based on the consistency error variable of the estimated attack time, the distributed time cooperative guidance law is designed, which ensures that the attack time of all the aircraft can reach the consistency within a finite time, and give a stability proof for the attack time error of the system based on the Lyapunov stability theory. The simulation results show that the proposed cooperative attack strategy considering the flight safety constraints of the wake vortex effect can effectively reduce the influence of the wake vortex interference during the dense flight of the vehicles, which not only ensures the safety of the flight of the aircraft cluster, but also ensures the temporal and spatial consistency of the cooperative attack of the cluster.

Cite this article

Duo ZHENG , Zhichen CHU , Defu LIN , Mingjun WEI , Siyi YUE . Cooperative guidance technique considering flight safety constraints of cluster wake vortex aerodynamic coupling effects[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(18) : 329906 -329906 . DOI: 10.7527/S1000-6893.2023.29906

References

1 韩煜, 宋韬, 郑多, 等. 基于冲突触发避碰机制的无人飞行器集群协同制导技术[J]. 兵工学报202344(7): 1881-1895.
  HAN Y, SONG T, ZHENG D, et al. Unmanned aerial vehicle cluster cooperative guidance technology based on conflict trigger mechanism[J]. Acta Armamentarii202344(7): 1881-1895 (in Chinese).
2 郑多, 韩煜, 鲁天宇, 等. 考虑避碰与任务分配的多飞行器协同制导技术[J]. 系统工程与电子技术202345(9): 2873-2883.
  ZHENG D, HAN Y, LU T Y, et al. Multi aircraft cooperative guidance technology considering collision avoidance constraint task allocation[J]. Systems Engineering and Electronics202345(9): 2873-2883 (in Chinese).
3 谷润平, 胡皓, 庄南剑, 等. 非涡核区域尾涡遭遇快速建模方法[J]. 科学技术与工程201919(23): 298-303.
  GU R P, HU H, ZHUANG N J, et al. Rapid modeling method for wake vortex encounter in non-vortex core region[J]. Science Technology and Engineering201919(23): 298-303 (in Chinese).
4 魏志强, 吴金栋, 刘馨泽, 等. 空中交通尾流间隔标准的安全性评估分析[J]. 中国安全生产科学技术201814(12): 180-185.
  WEI Z Q, WU J D, LIU X Z, et al. Safety assessment and analysis on standard of wake separation for air traffic[J]. Journal of Safety Science and Technology201814(12): 180-185 (in Chinese).
5 MAUERMANN T. Flexible aircraft modelling for flight loads analysis of wake vortex encounters[R]. G?ttingen : DLR, 2011.
6 KARPEL M, SHOUSTERMAN A, REYES M, et, al. Dynamic response to wake encounter: AIAA-2013-1921 [R]. Reston: AIAA, 2013.
7 HESSE H, PALACIOS R. Dynamic load alleviation in wake vortex encounters[J]. Journal of Guidance, Control, and Dynamics201639(4): 801-813.
8 LUCKNER R, H?HNE G, FUHRMANN M. Hazard criteria for wake vortex encounters during approach[J]. Aerospace Science and Technology20048(8): 673-687.
9 BAUER T, VECHTEL D, ABDELMOULA F, et al. In-flight wake encounter prediction with the wake encounter avoidance and advisory system: AIAA-2014-2333[R]. Reston: AIAA, 2014.
10 HOOGSTRATEN M, VISSER H G, HART D, et al. Improved understanding of en route wake-vortex encounters[J]. Journal of Aircraft201452(3): 981-989.
11 VAN BAREN G, TREVE V, ROOSELEER F, et al. Assessing the severity of wake encounters in various aircraft types in piloted flight simulations: AIAA-2017-1084[R]. Reston: AIAA, 2017.
12 温瑞英, 刘文瀚, 王红勇. 编队飞行中基于危险区域的后机最优位置研究[J]. 交通运输系统工程与信息202222(5): 300-308.
  WEN R Y, LIU W H, WANG H Y. Optimal position of trailing aircraft based on hazard zone in formation flight[J]. Journal of Transportation Systems Engineering and Information Technology202222(5): 300-308 (in Chinese).
13 张大龙. 多无人机紧密编队飞行控制系统设计方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2020: 14-15.
  ZHANG D L. Research on design method of close formation flight control system for multiple UAVs[D].Harbin: Harbin Engineering University, 2020: 14-15 (in Chinese).
14 JEON I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology200614(2): 260-266.
15 张友安, 马国欣, 王兴平. 多导弹时间协同制导: 一种领弹-被领弹策略[J]. 航空学报200930(6): 1109-1118.
  ZHANG Y A, MA G X, WANG X P. Time-cooperative guidance for multi-missiles: A leader-follower strategy[J]. Acta Aeronautica et Astronautica Sinica200930(6): 1109-1118 (in Chinese).
16 YU H, DAI K R, LI H J, et al. Cooperative guidance law for multiple missiles simultaneous attacks with fixed-time convergence[J]. International Journal of Control202396(9): 2167-2180.
17 张友根, 张友安. 控制撞击时间与角度的三维导引律: 一种两阶段控制方法[J]. 控制理论与应用201027(10): 1429-1434.
  ZHANG Y G, ZHANG Y A. Three-dimensional guidance law to control impact time and impact angle: A two-stage control approach[J]. Control Theory & Applications201027(10): 1429-1434 (in Chinese).
18 唐杨, 祝小平, 周洲, 等. 一种基于攻击时间和角度控制的协同制导方法[J]. 航空学报202243(1): 324844.
  TANG Y, ZHU X P, ZHOU Z, et al. Cooperative guidance method based on impact time and angle control[J]. Acta Aeronautica et Astronautica Sinica202243(1): 324844 (in Chinese).
19 WANG X H, LU X. Three-dimensional impact angle constrained distributed guidance law design for cooperative attacks[J]. ISA Transactions201873: 79-90.
20 李文, 尚腾, 姚寅伟, 等. 速度时变情况下多飞行器时间协同制导方法研究[J]. 兵工学报202041(6): 1096-1110.
  LI W, SHANG T, YAO Y W, et al. Research on time-cooperative guidance of multiple flight vehicles with time-varying velocity[J]. Acta Armamentarii202041(6): 1096-1110 (in Chinese).
21 李国飞, 李博皓, 吴云洁, 等. 多群组飞行器攻击时间控制协同制导方法[J]. 宇航学报202344(1): 110-118.
  LI G F, LI B H, WU Y J, et al. Cooperative guidance law with impact time control for clusters of flight vehicles[J]. Journal of Astronautics202344(1): 110-118 (in Chinese).
22 吕腾, 吕跃勇, 李传江, 等. 带空间协同的多导弹时间协同制导律[J]. 航空学报201839(10): 322115.
  LYU T, LYU Y Y, LI C J, et al. Time-cooperative guidance law for multiple missiles with spatial cooperation[J]. Acta Aeronautica et Astronautica Sinica201839(10): 322115 (in Chinese).
23 AN K, GUO Z Y, HUANG W, et al. A cooperative guidance approach based on the finite-time control theory for hypersonic vehicles[J]. International Journal of Aeronautical and Space Sciences202223(1): 169-179.
24 WANG L, XIAO F. Finite-time consensus problems for networks of dynamic agents[J]. IEEE Transactions on Automatic Control201055(4): 950-955.
25 张小件. 有限时间收敛的终端约束制导方法研究[D]. 西安: 西北工业大学, 2018: 110-111.
  ZHANG X J. Research on the guidance laws with terminal constraints based on finite time convergence[D]. Xi’an: Northwestern Polytechnical University, 2018: 110-111 (in Chinese).
26 宋申民. 运动稳定性与航天控制[M]. 北京: 科学出版社, 2014: 193-195.
  SONG S M. Motion stability and space control[M]. Beijing: Science Press, 2014: 193-195 (in Chinese).
27 宋俊红. 拦截机动目标的有限时间制导律及多弹协同制导律研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 37-38.
  SONG J H. Research on finite-time guidance law and cooperative guidance law of multi-missiles for intercepting maneuvering target[D]. Harbin: Harbin Institute of Technology, 2017: 37-38 (in Chinese).
28 ROMAN S M, ROTA G C. The umbral calculus[J]. Advances in Mathematics197827(2): 95-188.
Outlines

/