Solid Mechanics and Vehicle Conceptual Design

Semi-analytical solution for natural vibration of rectangular stiffened plates

  • Yufeng XING ,
  • Yuting LI
Expand
  • Institute of Solid Mechanics,Beihang University,Beijing 100191,China
E-mail: xingyf@buaa.edu.cn

Received date: 2024-09-19

  Revised date: 2024-10-14

  Accepted date: 2024-11-04

  Online published: 2024-11-07

Supported by

National Natural Science Foundation of China(12172023)

Abstract

Stiffened plate structures are widely used in aerospace, shipbuilding and other engineering fields, so the research on its vibration characteristics has significant academic and practical value. Based on the Rayleigh quotient and Rayleigh-Ritz method, this paper presents a semi-analytical method to solve the natural modes of rectangular stiffened plates. In this method, the closed-form mode functions of thin plates are used as the basis functions of the mode functions of stiffened plates, and the natural frequency equation and the mode functions of rectangular stiffened plates are derived according to the Rayleigh quotient. In addition, the governing differential equation of the simply supported stiffened rectangular plate with single stiffener is derived according to the Rayleigh quotient, and the exact solution is obtained using the separation-of-variable method. The effectiveness and accuracy of the proposed method are verified by comparing the present results with those of the finite element method and literature. The proposed method in this work can be used for theoretical analysis and parametric design of stiffened plates.

Cite this article

Yufeng XING , Yuting LI . Semi-analytical solution for natural vibration of rectangular stiffened plates[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(5) : 531240 -531240 . DOI: 10.7527/S1000-6893.2024.31240

References

1 SINHA L, MISHRA S S, NAYAK A N, et al. Free vibration characteristics of laminated composite stiffened plates: Experimental and numerical investigation[J]. Composite Structures2020233: 111557.
2 ISANAKA B R, AKBAR M A, MISHRA B P, et al. Free vibration analysis of thin plates: Bare versus Stiffened[J]. Engineering Research Express20202(1): 015014.
3 游翔宇, 郑文成, 李威, 等. 基于边光滑有限元法的加筋板静力和自由振动分析[J]. 计算力学学报201835(1): 28-34.
  YOU X Y, ZHENG W C, LI W, et al. Static and free vibration analysis of stiffened plates by ES-FEM using triangular element[J]. Chinese Journal of Computational Mechanics201835(1): 28-34 (in Chinese).
4 NAIR P S, RAO M S. On vibration of plates with varying stiffener length[J]. Journal of Sound Vibration198495(1): 19-29.
5 OLSON M D, HAZELL C R. Vibration studies on some integral rib-stiffened plates[J]. Journal of Sound Vibration197750(1): 43-61.
6 刘文光, 郭隆清, 付俊, 等. 加筋薄板的自由振动分析[J]. 机械设计与制造2017(2): 58-61, 66.
  LIU W G, GUO L Q, FU J, et al. Free vibration analysis of stiffened thin plate[J]. Machinery Design & Manufacture2017(2): 58-61, 66 (in Chinese).
7 刘璟泽, 姜东, 韩晓林, 等. 曲线加筋Kirchhoff-Mindlin板自由振动分析[J]. 力学学报201749(4): 929-939.
  LIU J Z, JIANG D, HAN X L, et al. Free vibration analysis of curvilinearly stiffened kirchhoff-mindlin plates[J]. Chinese Journal of Theoretical and Applied Mechanics201749(4): 929-939 (in Chinese).
8 肖倩, 朱仁传. 基于光滑有限元的加筋板静力自由振动和声辐射分析[J]. 中国造船201960(2): 13-28.
  XIAO Q, ZHU R C. Static and free vibration analysis of stiffened plates by ES-FEM with triangular element[J]. Shipbuilding of China201960(2): 13-28 (in Chinese).
9 AKSU G, ALI R. Free vibration analysis of stiffened plates using finite difference method[J]. Journal of Sound Vibration197648(1): 15-25.
10 彭林欣, 谌亚菁, 覃霞, 等. 弹性地基圆形加肋板静力弯曲及弯曲自由振动分析的无网格法[J]. 振动与冲击202241(7): 11-22, 30.
  PENG L X, CHEN Y J, QIN X, et al. Meshless method for static bending and free bending vibration analysis of stiffened circular plates on elastic foundation[J]. Journal of Vibration and Shock202241(7): 11-22, 30 (in Chinese).
11 陈思亚, 陈卫, 黄钟民, 等. 弹性地基加肋功能梯度板自由振动分析的无网格法[J]. 计算力学学报202239(6): 691-698.
  CHEN S Y, CHEN W, HUANG Z M, et al. Meshless method for free vibration analysis of stiffened functionally graded plates resting on elastic foundation[J]. Chinese Journal of Computational Mechanics202239(6): 691-698 (in Chinese).
12 孟亮, 杨金沅, 杨智威, 等. 典型飞机壁板结构的抗屈曲优化设计与试验验证[J]. 航空学报202445(5): 529679.
  MENG L, YANG J Y, YANG Z W, et al. Buckling-resisting optimization design of typical aircraft panel and test validation[J]. Acta Aeronautica et Astronautica Sinica202445(5): 529679 (in Chinese).
13 WITTRICK W H. General sinusoidal stiffness matrices for buckling and vibration analyses of thin flat-walled structures[J]. International Journal of Mechanical Sciences196810(12): 949-966.
14 周平, 赵德有. 四边简支单向加筋矩形板的振动特性分析[J]. 中国海洋平台200621(5): 16-20.
  ZHOU P, ZHAO D Y. Analysis of vibration characteristic for simply supported rectangular plate stiffened in single direction[J]. China Offshore Platform200621(5): 16-20 (in Chinese).
15 周叮. 两对边简支加筋矩形板模向自由振动的动刚度解法[J]. 强度与环境199219(1): 35-40, 46.
  ZHOU D. Dynamic stiffness method of transverse vibration of reinforced rectangular plates with two opposite edges simply supported[J]. Structure & Environment Engineering199219(1): 35-40, 46 (in Chinese).
16 DAMNJANOVI? E, NEFOVSKA-DANILOVI? M, PETRONIJEVI? M, et al. Application of the dynamic stiffness method in the vibration analysis of stiffened composite plates[J]. Procedia Engineering2017199: 224-229.
17 SAHOO P R, BARIK M. Free vibration analysis of curved stiffened plates[J]. Journal of Vibration Engineering & Technologies20219(6): 1091-1108.
18 张俊, 李天匀, 朱翔, 等. 开口加强矩形加筋板的自振特性分析[J]. 哈尔滨工程大学学报202041(11): 1617-1622.
  ZHANG J, LI T Y, ZHU X, et al. Free vibration analysis of stiffened rectangular plates with a cutout[J]. Journal of Harbin Engineering University202041(11): 1617-1622 (in Chinese).
19 耿佳傲, 陈美霞, 周志伟. 夹芯复合材料加筋板真空和水中自由振动分析[J]. 舰船科学技术202244(11): 12-21.
  GENG J A, CHEN M X, ZHOU Z W. Free vibration analysis in vacuum and water of sandwich composite stiffened plates[J]. Ship Science and Technology202244(11): 12-21 (in Chinese).
20 杜菲, 马天兵, 钱星光, 等. 基于Rayleigh-Ritz法的四边固支加筋板振动研究[J]. 科学技术与工程201717(11): 137-142.
  DU F, MA T B, QIAN X G, et al. Vibration research of stiffened plate with four edges clamped based on rayleigh-ritz method[J]. Science Technology and Engineering201717(11): 137-142 (in Chinese).
21 DOWELL E H. Free vibrations of a linear structure with arbitrary support conditions[J]. Journal of Applied Mechanics197138(3): 595.
22 李凯, 何书韬, 邱永康, 等. 附加多个集中质量加筋板的自由振动分析[J]. 中国舰船研究201510(5): 66-70.
  LI K, HE S T, QIU Y K, et al. Free vibration analysis of rectangular stiffened plates with several lumped mass[J]. Chinese Journal of Ship Research201510(5): 66-70 (in Chinese).
23 曾子平, 黄田, Hamilton J F. 任意加筋矩形板的振动分析[J]. 振动与冲击19884: 47-53.
  ZENG Z P, HAUNG T, HAMILTON J F. Vibration analysis of arbitrarily stiffened rectangular plates[J]. Journal of Vibration and Shock19884: 47-53 (in Chinese).
24 杨坤, 梅志远, 李华东. 正交加筋复合材料夹层板的自由振动求解[J]. 上海交通大学学报201448(6): 863-869.
  YANG K, MEI Z Y, LI H D. Free vibration analysis of orthogonally rib-stiffened composite sandwich plate[J]. Journal of Shanghai Jiao Tong University201448(6): 863-869 (in Chinese).
25 吴梵, 杨坤, 梅志远, 等. 正交加筋复合材料夹层板弯曲问题求解[J]. 船舶力学201317(1): 92-101.
  WU F, YANG K, MEI Z Y, et al. The bending solution of orthogonally rib-stiffened composite sandwich plate[J]. Journal of Ship Mechanics201317(1): 92-101 (in Chinese).
26 梁浩锋, 夏飞, 金福松, 等. 加筋复合材料层合板的自由振动特性与优化[J]. 振动与冲击202140(18): 190-196.
  LIANG H F, XIA F, JIN F S, et al. Free vibration of rib-reinforced composite laminates and its optimization[J]. Journal of Vibration and Shock202140(18): 190-196 (in Chinese).
27 邢誉峰, 李根, 袁冶. 矩形板本征值问题的封闭解析解法综述[J]. 航空学报202243(10): 527333.
  XING Y F, LI G, YUAN Y. A review of closed-form analytical solution methods for eigenvalue problems of rectangular plates[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527333 (in Chinese).
28 XING Y F, LIU B. New exact solutions for free vibrations of rectangular thin plates by symplectic dual method[J]. Acta Mechanica Sinica200925(2): 265-270.
29 XING Y F, SUN Q Z, LIU B, et al. The overall assessment of closed-form solution methods for free vibrations of rectangular thin plates[J]. International Journal of Mechanical Sciences2018140: 455-470.
30 XING Y F, WANG Z K. An improved separation-of-variable method for the free vibration of orthotropic rectangular thin plates[J]. Composite Structures2020252: 112664.
31 XING Y F, WANG Z K. An extended separation-of-variable method for the free vibration of orthotropic rectangular thin plates[J]. International Journal of Mechanical Sciences2020182: 105739.
32 姚本炎, 黄其柏. 加筋薄板结构振动与声辐射特性研究[J]. 华中科技大学学报(自然科学版)200129(2): 90-92.
  YAO B Y, HUANG Q B. Research on the vibration and sound radiation characteristics of stiffened thin plate[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition)200129(2): 90-92 (in Chinese).
33 SAHOO P R, BARIK M. Free vibration analysis of stiffened plates[J]. Journal of Vibration Engineering & Technologies20208(6): 869-882.
34 MISHRA B P, BARIK M. Free flexural vibration of thin stiffened plates using NURBS-Augmented finite element method[J]. Structures202133: 1620-1632.
35 SHEIKH A H, MUKHOPAKHYAY M. Free vibration analysis of stiffened plates with arbitrary planform by the general spline finite strip method[J]. Journal of Sound Vibration1993162(1): 147-164.
Outlines

/