Fluid Mechanics and Flight Mechanics

Research and experimental validation of loose coupling design method for propulsion wing unit

  • Kelei WANG ,
  • Zhou ZHOU ,
  • Minghao LI
Expand
  • 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.National Key Laboratory of Aircraft Configuration Design,Xi’an 710072,China

Received date: 2024-09-04

  Revised date: 2024-09-30

  Accepted date: 2024-11-04

  Online published: 2024-11-07

Supported by

Equipment Advanced Research Project(50911040803);Aeronautical Science Foundation of China(2024Z006053001)

Abstract

Based on the research background of advanced aerodynamic design technology of distributed hybrid electric propulsion aircraft, a loose coupling design method of rectangle ducted fan unit under engineering constraints is proposed for the propulsive/aerodynamic coupling problem of distributed propulsion wing. Through the coupling iteration of the rotor blade design optimization module influenced by the duct wall and the duct wall design optimization module based on a given rotor blade momentum source model, the complexity of the design problem is effectively reduced, and the multi-objective design optimization considering both hovering and forward flight characteristics of the rectangle ducted fan unit is achieved for this complex, multi-parameter object. Finally, the effectiveness and feasibility of the present loose coupling design method are verified through wind tunnel tests including force and pressure measurements.

Cite this article

Kelei WANG , Zhou ZHOU , Minghao LI . Research and experimental validation of loose coupling design method for propulsion wing unit[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(9) : 212 -229 . DOI: 10.7527/S1000-6893.2024.31150

References

1 陈安强, 崔济多, 杨志鹏, 等. 美国高速垂直起降飞行器预研项目发展及启示[J]. 飞航导弹2021(1): 91-98.
  CHEN A Q, CUI J D, YANG Z P, et al. Development and enlightenment of the pre-research project for high speed vertical takeoff and landing aircraft in the United States[J]. Aerodynamic Missile Journal2021(1): 91-98 (in Chinese).
2 王科雷, 周洲, 马悦文, 等. 垂直起降固定翼无人机技术发展及趋势分析[J]. 航空工程进展202213(5): 1-13.
  WANG K L, ZHOU Z, MA Y W, et al. Development and trend analysis of vertical takeoff and landing fixed wing UAV[J]. Advances in Aeronautical Science and Engineering202213(5): 1-13 (in Chinese).
3 黄俊. 分布式电推进飞机设计技术综述[J]. 航空学报202142(3): 624037.
  HUANG J. Survey on design technology of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica202142(3): 624037 (in Chinese).
4 王科雷. 低雷诺数多桨布局滑流耦合的气动优化设计研究[D]. 西安: 西北工业大学, 2017.
  WANG K L. Research on aerodynamic optimization design of low-Reynolds-number multi-propeller configuration taking into account the slipstream effects[D]. Xi’an: Northwestern Polytechnical University, 2017 (in Chinese).
5 王科雷, 周洲, 祝小平. 耦合多螺旋桨滑流影响的低雷诺数机翼设计[J]. 航空学报201738(6): 120813.
  WANG K L, ZHOU Z, ZHU X P. Aerodynamic design of low-Reynolds-number wing taking into account the multiple propellers induced effects[J]. Acta Aeronautica et Astronautica Sinica201738(6): 120813 (in Chinese).
6 王科雷, 周洲, 祝小平, 等. 低雷诺数多螺旋桨/机翼耦合气动设计[J]. 航空学报201839(8): 121918.
  WANG K L, ZHOU Z, ZHU X P, et al. Multi-propeller/wing coupled aerodynamic design at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica201839(8): 121918 (in Chinese).
7 SRILATHA A R. Design of a 4-seat, general aviation, electric aircraft[D]. San Jose: San Jose State University, 2012.
8 DEERE K A, VIKEN S A, CARTER M B, et al. Computational analysis of powered lift augmentation for the LEAPTech distributed electric propulsion wing: AIAA- 2017-3921[R]. Reston: AIAA, 2017.
9 PATTERSON M D, BORER N K, GERMAN B J. A simple method for high-lift propeller conceptual design: AIAA-2016-0770[R]. Reston: AIAA, 2016.
10 PATTERSON M D. Conceptual design of high-lift propeller systems for small electric aircraft[D]. Atlanta: Georgia Institute of Technology, 2016.
11 BENTO H F, DE VRIES R, VELDHUIS L L. Aerodynamic performance and interaction effects of circular and square ducted propellers: AIAA-2020-1029[R]. Reston: AIAA, 2020.
12 孙蓬勃, 周洲, 郭佳豪. 不同形状涵道风扇推进特性数值分析[J]. 航空动力学报202237(12): 2736-2748.
  SUN P B, ZHOU Z, GUO J H. Numerical analysis for propulsion characteristics of ducted fans in different shapes[J]. Journal of Aerospace Power202237(12): 2736-2748 (in Chinese).
13 PERRY A T, ANSELL P J, KERHO M F. Aero-propulsive and propulsor cross-coupling effects on a distributed propulsion system[J]. Journal of Aircraft201855(6): 2414-2426.
14 PIEPER K, PERRY A T, ANSELL P J, et al. Design and development of a dynamically, scaled distributed electric propulsion aircraft testbed?[C]?∥2018 AIAA/IEEE Electric Aircraft Technologies Symposium. Piscataway: IEEE Press, 2018.
15 YU D, ANSELL P J, HRISTOV G. Aero-propulsive integration effects of an overwing distributed electric propulsion system: AIAA-2021-0604[R]. Reston: AIAA, 2021.
16 张阳, 周洲, 郭佳豪. 分布式涵道风扇喷流对后置机翼的气动性能影响[J]. 航空学报202142(9): 224977.
  ZHANG Y, ZHOU Z, GUO J H. Effects of distributed electric propulsion jet on aerodynamic performance of rear wing[J]. Acta Aeronautica et Astronautica Sinica202142(9): 224977 (in Chinese).
17 张星雨, 高正红, 雷涛, 等. 分布式电推进飞机气动-推进耦合特性地面试验[J]. 航空学报202243(8): 125389.
  ZHANG X Y, GAO Z H, LEI T, et al. Ground test on aerodynamic-propulsion coupling characteristics of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica202243(8): 125389 (in Chinese).
18 王海童, 王掩刚, 周芳, 等. 基于面元法的分布式涵道推进系统进气道优化设计[J]. 推进技术202142(11): 2465-2473.
  WANG H T, WANG Y G, ZHOU F, et al. Optimization design of inlet for distributed ducted fan propulsion system based on panel method[J]. Journal of Propulsion Technology202142(11): 2465-2473 (in Chinese).
19 GUO J H, ZHOU Z. Multi-objective design of a distributed ducted fan system[J]. Aerospace20229(3): 165.
20 WANG K L, ZHOU Z. Aerodynamic design, analysis and validation of a small blended-wing-body unmanned aerial vehicle[J]. Aerospace20229(1): 36.
21 王科雷, 周洲, 郭佳豪, 等. 分布式动力翼前飞状态动力/气动耦合特性[J]. 航空学报202445(2): 128643.
  WANG K L, ZHOU Z, GUO J H, et al. Propulsive/aerodynamic coupled characteristics of distributed-propulsion-wing during forward flight[J]. Acta Aeronautica et Astronautica Sinica202445(2): 128643 (in Chinese).
22 KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft200845(1): 142-158.
23 李岳锋, 杨青真, 孙志强. 超椭圆S形进气道的设计及气动性能研究[J]. 计算机仿真201128(3): 82-85.
  LI Y F, YANG Q Z, SUN Z Q. Design of super-elliptic S-shaped inlet and analysis of aerodynamic performance[J]. Computer Simulation201128(3): 82-85 (in Chinese).
24 齐旻, 王占学, 周莉, 等. 唇口几何参数对短舱进气道性能影响数值研究[J]. 推进技术202041(9): 2021-2030.
  QI M, WANG Z X, ZHOU L, et al. Numerical study on effects of lip geometric parameters on performance of nacelle inlet[J]. Journal of Propulsion Technology202041(9): 2021-2030 (in Chinese).
25 芦殿军. Bezier曲线的拼接及其连续性[J]. 青海大学学报(自然科学版)200422(6): 84-86.
  LU D J. Connection and continuity of the Bezier curve[J]. Journal of Qinghai University (Natural Science)200422(6): 84-86 (in Chinese).
26 MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal199432(8): 1598-1605.
27 陈广强, 白鹏, 詹慧玲, 等. 一种推进式螺旋桨无人机滑流效应影响研究[J]. 空气动力学学报201533(4): 554-562.
  CHEN G Q, BAI P, ZHAN H L, et al. Numerical simulation study on propeller slipstream effect on unmanned air vehicle with propeller engine[J]. Acta Aerodynamica Sinica201533(4): 554-562 (in Chinese).
28 RAJAGOPALAN R G, FANUCCI J B. Finite difference model for vertical axis wind turbines[J]. Journal of Propulsion and Power19851(6): 432-436.
29 ZHANG T, BARAKOS G N. High-fidelity CFD validation and assessment of ducted propellers for aircraft propulsion[J]. Journal of the American Helicopter Society202166(1): 1-28.
30 郭佳豪, 周洲, 李旭. 一种涵道螺旋桨桨叶高效设计方法[J]. 航空学报202243(7): 125253.
  GUO J H, ZHOU Z, LI X. An efficient design method for blade of ducted propeller[J]. Acta Aeronautica et Astronautica Sinica202243(7): 125253 (in Chinese).
31 郭佳豪, 周洲, 李旭. 对转涵道风扇桨叶高效设计方法[J]. 航空动力学报202237(9): 1835-1845.
  GUO J H, ZHOU Z, LI X. Efficient design method for blades of counter-rotating ducted fan[J]. Journal of Aerospace Power202237(9): 1835-1845 (in Chinese).
Outlines

/