Fluid Mechanics and Flight Mechanics

Aerodynamic and operational characteristics analysis for tandem wing cargo UAV at high angle of attack

  • Pengqian YANG ,
  • Yutong CHEN ,
  • Junhui LIU ,
  • Jiehao YANG ,
  • Jiayuan SHAN ,
  • Shijun SUN
Expand
  • 1.School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
    2.Key Laboratory of Dynamics and Control of Flight Vehicle of Ministry of Education,Beijing Institute of Technology,Beijing 100081,China
    3.National Key Laboratory of Land and Air Based Information Perception and Control,Beijing 100081,China

Received date: 2024-08-12

  Revised date: 2024-09-11

  Accepted date: 2024-10-17

  Online published: 2024-11-04

Supported by

National Natural Science Foundation of China(62473043);Key R&D Program (Soft Science Project of Shandong Province)(2020CXG011502)

Abstract

To achieve accurate cargo airdrop and low-speed undamaged landing in limited area, the high angle of attack aerodynamic and operational characteristics of tandem wing cargo UAV are researched. Considering the aerodynamic nonlinearity at high angle of attack and the strong coupling of front and rear wings of tandem wing UAV, the Detached Eddy Simulation (DES) method is used to analyze the nonlinear aerodynamic characteristics at high angle of attack. The lift coefficient, drag coefficient and pitch moment of each component and aerodynamic center are calculated with the variation of the angle of attack. The influence of different fuselage cross sections on the longitudinal stability of the UAV is further studied. The coupling mechanism of tandem wing is analyzed according to the distribution characteristics of wing surface pressure and the structure of surrounding flow field. A manipulation scheme for the full-motion rear wing at high angle of attack in the tandem wing UAV is proposed. The results show that the static stability of the square fuselage cross section is more stable than the round cross section at high attack angle. In the wide range of attack angle from 0° to 50°, there is aerodynamic coupling between the front and rear wings. The pressure distribution of the rear wing is affected by the aerodynamic coupling between the front and rear wings, and the lift loss of the rear wing is up to 32%. The full-motion rear wing increases the controllable angle of attack to 50°, which can provide sufficient control torque for deep stall landing at high angle of attack.

Cite this article

Pengqian YANG , Yutong CHEN , Junhui LIU , Jiehao YANG , Jiayuan SHAN , Shijun SUN . Aerodynamic and operational characteristics analysis for tandem wing cargo UAV at high angle of attack[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(9) : 131056 -131056 . DOI: 10.7527/S1000-6893.2024.31056

References

1 XU B. Disturbance observer-based dynamic surface control of transport aircraft with continuous heavy cargo airdrop[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems201747(1): 161-170.
2 CACAN M R, SCHEUERMANN E, WARD M, et al. Autonomous airdrop systems employing ground wind measurements for improved landing accuracy[J]. IEEE/ASME Transactions on Mechatronics201520(6): 3060-3070.
3 CACAN M R, COSTELLO M, WARD M, et al. Human-in-the-loop control of guided airdrop systems[J]. Aerospace Science and Technology201984: 1141-1149.
4 BENNEY R, MCGRATH J, MCHUGH J, et al. DOD JPADS programs overview and NATO activities[C]∥ 19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2007.
5 FIGAT M, KWIEK A. Analysis of longitudinal dynamic stability of tandem wing aircraft[J]. Aircraft Engineering and Aerospace Technology202395(9): 1411-1422.
6 RHODES M D, SELBERG B P. Benefits of dual wings over single wings for high-performance business airplanes[J]. Journal of Aircraft198421(2): 116-127.
7 CARRUTHERS A C, THOMAS A L R, TAYLOR G K. Automatic aeroelastic devices in the wings of a steppe eagle Aquila nipalensis[J]. Journal of Experimental Biology2007210(Pt 23): 4136-4149.
8 VISSER H G. Optimization of high angle-of-attack approach to landing trajectories[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2005219(6): 497-506.
9 TANIGUCHI H. Analysis of deepstall landing for UAV[C]?∥26th Congress of the Aeronautical Science. Bonn: ICAS, 2008.
10 POINTNER W, KOTSIS G, LANGTHALER P, et al. Using formal methods to verify safe deep stall landing of a MAV[C]∥2011 IEEE/AIAA 30th Digital Avionics Systems Conference. Piscataway: IEEE Press, 2011: 5D1-1-5D1-10.
11 PARK S. Control and guidance for precision deep stall landing[J]. Journal of Guidance, Control, and Dynamics201943(2): 365-372.
12 PATIDAR V K, YADAV R, JOSHI S. Numerical investigation of the effect of stagger on the aerodynamic characteristics of a Busemann biplane[J]. Aerospace Science and Technology201655: 252-263.
13 JONES R, CLEAVER D J, GURSUL I. Aerodynamics of biplane and tandem wings at low Reynolds numbers[J]. Experiments in Fluids201556(6): 124.
14 FEISTEL T W, CORSIGLIA V R, LEVIN D B. Wind-tunnel measurements of wing-canard interference and a comparison with various theories[C]?∥SAE 1981Transactions-V90-A. New York:SAE International, 1981.
15 唐胜景, 刘真畅, 周运强, 等. 后翼上反串置翼无人机气动特性研究[J]. 北京理工大学学报201535(12): 1211-1216.
  TANG S J, LIU Z C, ZHOU Y Q, et al. Investigation on aerodynamic performance of tandem wing UAV with rear wing dihedral[J]. Transactions of Beijing Institute of Technology201535(12): 1211-1216 (in Chinese).
16 LI Y T, ZHANG L, CHEN G, et al. Aerodynamic optimization design of asymmetrical UAV with tandem wings[C]?∥3rd International Conference in Aero-space for Young Scientists, 2018.
17 OBERKAMPF W L, NICOLAIDES J D. Aerodynamics of finned missiles at high angle of attack[J]. AIAA Journal19719(12): 2378-2384.
18 张子军, 赵彤, 孙烨, 等. 飞机大迎角飞行问题研究综述[J]. 航空工程进展202213(3): 74-85.
  ZHANG Z J, ZHAO T, SUN Y, et al. Review of the study on high-angle-of-attack flight problems of aircraft[J]. Advances in Aeronautical Science and Engineering202213(3): 74-85 (in Chinese).
19 CUI Y D, TSAI H M. Side force suppression by dimples on ogive-cylinder body[J]. AIAA Journal200947(4): 1046-1049.
20 翟建, 张伟伟, 王焕玲. 大迎角前体涡控制方法综述[J]. 空气动力学学报201735(3): 354-367.
  ZHAI J, ZHANG W W, WANG H L. Reviews of forebody vortex control method at high angles of attack[J]. Acta Aerodynamica Sinica201735(3): 354-367 (in Chinese).
21 朱莹, 刘振, 唐瑞卿, 等. 大迎角下细长旋成体气动特性估算方法研究[J]. 飞行力学201533(3): 213-217.
  ZHU Y, LIU Z, TANG R Q, et al. Investigation on the methods for estimating aerodynamic characteristics for slender body at high angle of attack[J]. Flight Dynamics201533(3): 213-217 (in Chinese).
22 李怀璐, 王旭, 王霄, 等. 大迎角机动飞行的气动力建模与飞行仿真[J]. 航空学报202344(19): 128410.
  LI H L, WANG X, WANG X, et al. Aerodynamic modeling and flight simulation of maneuver flight at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica202344(19): 128410 (in Chinese).
23 GUO R X, BAI Y, PEI X B, et al. Numerical investigation of aerodynamics and wake on biplane airfoils at high angles of attack[J]. International Journal of Mechanical Sciences2021205: 106606.
24 ZHANG G Q, YU S C M. Unsteady aerodynamics of a morphing tandem-wing unmanned aerial vehicle[J]. Journal of Aircraft201249(5): 1315-1323.
25 李大鹏, 左松宸, 顾瑞. 基于DATCOM的串列翼布局飞行器总体特性研究[J]. 飞机设计202444(1): 14-19, 29.
  LI D P, ZUO S C, GU R. Research on overall characteristics of tandem wing layout based on DATCOM[J]. Aircraft Design202444(1): 14-19, 29 (in Chinese).
26 鲁亚飞, 陈清阳, 王鹏, 等. 小型空射无人飞行器设计与试验[J]. 航空学报202344(15): 528642.
  LU Y F, CHEN Q Y, WANG P, et al. Design and experiment of a small air-launched UAV[J]. Acta Aeronautica et Astronautica Sinica202344(15): 528642 (in Chinese).
27 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报202041(4): 023732.
  WANG X K, LIU Z H, CONG Y R, et al. Miniature fixed-wing UAV swarms: Review and outlook[J]. Acta Aeronautica et Astronautica Sinica202041(4): 023732 (in Chinese).
28 刘周, 杨云军, 周伟江, 等. 基于RANS-LES混合方法的翼型大迎角非定常分离流动研究[J]. 航空学报201435(2): 372-380.
  LIU Z, YANG Y J, ZHOU W J, et al. Study of unsteady separation flow around airfoil at high angle of attack using hybrid RANS-LES method[J]. Acta Aeronautica et Astronautica Sinica201435(2): 372-380 (in Chinese).
29 徐一航, 刘伟. 横向喷流对低速大攻角细长旋成体非对称气动特性影响研究[J]. 力学学报202355(11): 2504-2517.
  XU Y H, LIU W. Study on the effect of transverse jet on the asymmetric aerodynamic characteristics of slender spinning bodies with low speed and large angle of attack[J]. Chinese Journal of Theoretical and Applied Mechanics202355(11): 2504-2517 (in Chinese).
30 白俊强, 张扬, 华俊. 一种滤波SST方法在翼型深失速模拟中的应用[J]. 航空学报201334(5): 979-987.
  BAI J Q, ZHANG Y, HUA J. Application of filter-SST method in airfoil deep stall simulation[J]. Acta Aeronautica et Astronautica Sinica201334(5): 979-987 (in Chinese).
31 国家空间科学数据中心. 国家数值风洞工程CFD验证与确认数据库[EB/OL]. (2024-07-24)[2024-08-07]. .
  National Space Science Data Center. Verification and validation database of computational fluid dynam-ics[EB/OL].(2024-07-24)[2024-08-07]. (in Chinese).
32 钱杏芳, 林瑞熊, 赵亚男. 导弹飞行力学[M]. 北京: 北京理工大学出版社, 2006:17.
  QIAN X F, LIN R X, ZHAO Y N. Missile flight mechanics[M]. Beijing: Beijing Insititute of Technology Press, 2006:17 (in Chinese).
33 刘虎, 罗明强, 孙康文. 飞机总体设计[M]. 北京: 北京航空航天大学出版社, 2019: 246.
  LIU H, LUO M Q, SUN K W. Aircraft conceptual design[M]. Beijing: Beihang University Press, 2019: 246 (in Chinese).
Outlines

/