ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Simulation research on thermal management system of fuel cell for liquid hydrogen powered UAV
Received date: 2024-07-18
Revised date: 2024-08-28
Accepted date: 2024-10-18
Online published: 2024-11-04
Fuel cell powered Unmanned Aerial Vehicle (UAV), characterized by long endurance, low infrared radiation, low carbon emission, has become a promising technology for future UAV designs. Considering the high heat loads and small temperature difference during heat exchange, the present study develops a thermal management system and the corresponding control strategy of fuel cell for liquid hydrogen powered UAV. Utilizing the cold energy of liquid hydrogen for fuel cell cooling, the proposed thermal management system effectively provides a new idea for the future design and optimization of UAV thermal management. Based on the proposed thermal management system, a simulation study is conducted on the operation process of thermal management system under typical flight phases. The results indicate that: Based on the developed thermal management model, the temperature of fuel cell is effectively controlled for each flight phase. The maximum and minimum outlet temperature of the liquid coolant is 70 ℃ and 14.6 ℃, respectively. The liquid coolant temperature at the fuel cell outlet can be maintained at 65 ℃ during cruise. Meanwhile, the internal pressure of liquid hydrogen tank is stably maintained at 0.5±0.04 MPa. For the takeoff phase which the heat loads reach the maximum value, the expendable hydrogen is applied as heat sink for thermal management. This method can reduce the air intake area, and subsequently avoid the liquid coolant freezing at high altitude. Under the premise of consistent minimum temperature in the thermal management system, ethylene glycol aqueous solution carries less mass than water, has a greater temperature difference between the solidification point that has lower solidification risk, but consumes more liquid hydrogen during the climbing phase. Based on the simulation results, the prediction model is proposed for the mass of consumed liquid hydrogen during takeoff. The model has significant guiding value in optimal design of fuel cell thermal management system for UAV.
Key words: liquid hydrogen; UAV; PEMFC; thermal management system; dynamic analysis
Xiangyu YU , Wen LI , Jie YAN , Shizhe LIANG . Simulation research on thermal management system of fuel cell for liquid hydrogen powered UAV[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(9) : 630964 -630964 . DOI: 10.7527/S1000-6893.2024.30964
1 | 朱超磊, 金钰, 王靖娴, 等. 2022年国外军用无人机装备技术发展综述[J]. 战术导弹技术, 2023(3): 11-25, 31. |
ZHU C L, JIN Y, WANG J X, et al. Overview of the development of foreign military UAV systems and technology in 2022[J]. Tactical Missile Technology, 2023(3): 11-25, 31 (in Chinese). | |
2 | 裴锦华. 民用无人机产业发展动态及其在网络通信领域中的应用[J]. 电信工程技术与标准化, 2017, 30(4): 1-6. |
PEI J H. Development trends of civil UAV industry and its applications in network & communication field?[J]. Telecom Engineering Technics and Standardization, 2017, 30(4): 1-6 (in Chinese). | |
3 | 任媛媛, 高一栋, 焦慕卿. 无人机发展应用及反无手段研究[J]. 火控雷达技术, 2022, 51(1): 27-32, 39. |
REN Y Y, GAO Y D, JIAO M Q. Research on development and application of UAVs and counter-UAV means[J]. Fire Control Radar Technology, 2022, 51(1): 27-32, 39 (in Chinese). | |
4 | 刘铁军. 从十三届珠海航展看中国无人机发展特点及趋势[J]. 中国航天, 2022(4): 8-11. |
LIU T J. Characteristics and trend of UAV development in China from the 13th Zhuhai airshow?[J]. Aerospace China, 2022(4): 8-11 (in Chinese). | |
5 | 祝彬, 陈笑南, 范桃英. 国外超高空长航时无人机发展分析[J]. 中国航天, 2013(11): 28-32. |
ZHU B, CHEN X N, FAN T Y. Development analysis of foreign ultra-high altitude long-endurance UAV?[J]. Aerospace China, 2013(11): 28-32 (in Chinese). | |
6 | 刘莉, 杜孟尧, 张晓辉, 等. 太阳能/氢能无人机总体设计与能源管理策略研究?[J]. 航空学报, 2016, 37(1): 144-162. |
LIU L, DU M Y, ZHANG X H, et al. Conceptual design and energy management strategy for UAV with hybrid solar and hydrogen energy[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 144-162 (in Chinese). | |
7 | 高彦峰, 宋琦, 谢高峰, 等. 临近空间无人机液氢供能系统技术分析[J]. 航空工程进展, 2024, 15(2): 11-24. |
GAO Y F, SONG Q, XIE G F, et al. Analysis of liquid hydrogen power systems for near space unmanned aerial vehicles[J]. Advances in Aeronautical Science and Engineering, 2024, 15(2): 11-24 (in Chinese). | |
8 | 李广佳, 陈柽, 贾永清, 等. 临近空间氢动力无人机技术发展与应用分析[C]∥2015第二届中国航空科学技术大会. 北京: 中国航空学会, 2015: 572-576. |
LI G J, CHEN C, JIA Y Q, et al. Analysis of technology progress and applications of the near space hydrogen powered unmanned aircraft [C]∥2015 2nd China Aviation Science and Technology Conference. Beijing: China Society of Aeronautics and Astronautics, 2015: 572-576 (in Chinese). | |
9 | 徐晨华. 美国非太阳能动力超长航时无人机发展综述[J]. 飞航导弹, 2018(8): 35-41. |
XU C H. Review on the development of non-solar-powered ultra-long endurance UAV in the United States[J]. Aerodynamic Missile Journal, 2018(8): 35-41 (in Chinese). | |
10 | MARQUARDT J, KELLER J, MILLS G, et al. An overview of Ball Aerospace cryogen storage and delivery systems?[J]. IOP Conference Series: Materials Science and Engineering, 2015, 101: 012086. |
11 | 刘莉, 曹潇, 张晓辉, 等. 轻小型太阳能/氢能无人机发展综述[J]. 航空学报, 2020, 41(3): 623474. |
LIU L, CAO X, ZHANG X H, et al. Review of development of light and small scale solar/hydrogen powered unmanned aerial vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623474 (in Chinese). | |
12 | 张永杰, 王鸿深, 崔博, 等. 氢能客机低温液氢储罐的装机环境适应性分析研究进展[J]. 航空学报, 2025, 46(9): 629870. |
ZHANG Y J, WANG H S, CUI B, et al. Research progress in the analysis of installed environment adaptability of cryogenic liquid hydrogen tanks for hydrogen-powered aircraft[J]. 2025, 46(9): 629870. | |
13 | HARTMANN C, N?LAND J K, NILSSEN R, et al. Dual use of liquid hydrogen in a next-generation PEMFC-powered regional aircraft with superconducting propulsion?[J]. IEEE Transactions on Transportation Electrification, 2022, 8(4): 4760-4778. |
14 | SILVA F F DA, FERNANDES J F P, COSTA BRANCO P J DA. Barriers and challenges going from conventional to cryogenic superconducting propulsion for hybrid and all-electric aircrafts?[J]. Energies, 2021, 14(21): 6861. |
15 | DEZHIN D S, DEZHINA I N. Development of the future aircraft propulsion system based on HTS electrical equipment with liquid hydrogen cooling[J]. IEEE Transactions on Applied Superconductivity, 2022, 32(4): 3601105. |
16 | 宋东彬, 闫炬壮, 杨文将, 等. 面向电动航空的高温超导电机技术研究发展[J]. 航空学报, 2023, 44(9): 027469. |
SONG D B, YAN J Z, YANG W J, et al. Technology development of high temperature superconducting machine for electric aviation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 027469 (in Chinese). | |
17 | 张新榃, 于航, 彭俊毅, 等. 氢能源民用飞机技术路线与总体概念设计方法研究[J]. 推进技术, 2024, 45(3): 2210088. |
ZHANG X T, YU H, PENG J Y, et al. Technical route research and concept design of hydrogen aircraft[J]. Journal of Propulsion Technology, 2024, 45(3): 2210088 (in Chinese). | |
18 | 杨志刚, 王曼, 张志雄, 等. 商用飞机新能源动力发展路径分析与展望[J]. 推进技术, 2024, 45(3): 2210087. |
YANG Z G, WANG M, ZHANG Z X, et al. Analysis and prospect of new energy power development path of commercial aircraft?[J]. Journal of Propulsion Technology, 2024, 45(3): 2210087 (in Chinese). | |
19 | 陈思彤, 李微微, 王学科, 等. 相变材料用于质子交换膜燃料电池的热管理[J]. 化工学报, 2016, 67(S1): 1-6. |
CHEN S T, LI W W, WANG X K, et al. Thermal management using phase change materials for proton exchange membrane fuel cells?[J]. CIESC Journal, 2016, 67(S1): 1-6 (in Chinese). | |
20 | 马富康, 苏铁熊, 赵振峰, 等. 对置活塞二冲程柴油机热平衡和余热可用能分析[J]. 中北大学学报(自然科学版), 2017, 38(4): 433-438, 445. |
MA F K, SU T X, ZHAO Z F, et al. Analysis of thermal balance and waste heat exergy for opposed-piston two-stroke diesel engine?[J]. Journal of North University of China (Natural Science Edition), 2017, 38(4): 433-438, 445 (in Chinese). | |
21 | 孙爱洲, 王鹏, 李子非, 等. 某柴油机排气能量热力学计算分析[J]. 现代车用动力, 2017(3) :29-33. |
SUN A Z, WANG P, LI Z F, et al. Thermodynamic calculation and analysis on exhaust energy of diesel engine [J]. Modern vehicle power, 2017(3): 29-33 (in Chinese). | |
22 | 耿毫伟, 李红信, 靳晨曦, 等. 氢燃料电池热管理系统仿真分析[J]. 汽车实用技术, 2023, 48(20): 15-19. |
GENG H W, LI H X, JIN C X, et al. Simulation analysis of fuel cell thermal management system[J]. Automobile Applied Technology, 2023, 48(20): 15-19 (in Chinese). | |
23 | 袁磊, 吕婷婷, 李康, 等. 一种机车用氢燃料电池热管理系统[J]. 铁道机车与动车, 2024(1): 35-37, 44, 6. |
YUAN L, LYU T T, LI K, et al. A hydrogen fuel cell thermal management system for locomotives[J]. Railway Locomotive and Motor Car, 2024(1): 35-37, 44, 6 (in Chinese). | |
24 | 王星, 孙俊, 张振东, 等. 燃料电池热管理系统的动态仿真及控制[J]. 电池, 2023, 53(6): 600-604. |
WANG X, SUN J, ZHANG Z D, et al. Dynamic simulation and control of fuel cell thermal management system[J]. Battery Bimonthly, 2023, 53(6): 600-604 (in Chinese). | |
25 | 向乾, 张晓辉, 王正平, 等. 适用无人机的小型燃料电池控制方法[J]. 航空学报, 2021, 42(3): 623960. |
XIANG Q, ZHANG X H, WANG Z P, et al. Control method of small fuel cells for UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 623960 (in Chinese). | |
26 | 寿荣中, 何慧珊. 飞行器环境控制[M]. 北京: 北京航空航天大学出版社, 2004. |
SHOU R Z, HE H S. Aircraft environmental control[M]. Beijing: Beihang University Press, 2004 (in Chinese). | |
27 | 杨世铭, 陶文铨. 传热学(第四版)[M]. 北京: 高等教育出版社, 2007. |
YANG S M, TAO W Q. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2007 (in Chinese). |
/
〈 |
|
〉 |