ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Mesoscopic thermal response characteristics of CMC materials under high-speed flight conditions
Received date: 2024-04-28
Revised date: 2024-06-06
Accepted date: 2024-10-14
Online published: 2024-11-04
The performance evaluation and design of high-temperature thermal protection structures are vital prerequisites for ensuring thermal safety in high-speed aircraft. Accurately predicting the non-steady-state thermal response characteristics of thermal protection structures under actual flight conditions is of utmost importance. This study investigates typical Ceramic Matrix Composite (CMC) thermal protection structures. The aerodynamic flow field around the leading edge of the aircraft was computed using both the Finite Volume Method (FVM) and Finite Difference Method (FDM). Additionally, simulations were conducted to model the thermal response process of Representative Volume (REV) and equivalent models of CMC materials under the coupling conditions of convection and radiation. A comparative analysis was performed to investigate the non-steady-state thermal response characteristics of CMC materials under transient aerothermal loads. The research findings indicate that the thermal response of the REV model exhibits a more complex spatiotemporal distribution under the coupling conditions of fluid flow and heat transfer. Under the prescribed conditions, with an aerothermal load condition of 150.34 kW/m2, the REV model shows a maximum temperature difference of 21.78 K on the wall, and the peak difference in heat flux occurs 2.39 s after the peak temperature difference. The internal temperature distribution of the structure is strongly influenced by the spatial distribution and thermal properties of the matrix and fiber yarn. Along the thickness direction, the temperature gradient exhibits an oscillatory waveform with a gradual attenuation. The conclusions of this study can provide important theoretical references for the low redundancy design of aircraft thermal protection systems and the accurate prediction of thermal environments. These findings can contribute to the development of more efficient and reliable thermal protection systems for aircraft, ensuring their thermal safety under high-speed flight conditions.
Caichen WANG , Chao ZHANG , Xingkao CAI , Xiaofeng YANG , Guangming XIAO , Yanxia DU . Mesoscopic thermal response characteristics of CMC materials under high-speed flight conditions[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(3) : 230620 -230620 . DOI: 10.7527/S1000-6893.2024.30620
1 | 杨超, 许赟, 谢长川. 高超声速飞行器气动弹性力学研究综述[J]. 航空学报, 2010, 31(1): 1-11. |
YANG C, XU Y, XIE C C. Review of studies on aeroelasticity of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 1-11 (in Chinese). | |
2 | 桂业伟, 刘磊, 魏东. 长航时高超声速飞行器的综合热效应问题[J]. 空气动力学学报, 2020, 38(4): 641-650. |
GUI Y W, LIU L, WEI D. Combined thermal phenomena issues of long endurance hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2020, 38(4): 641-650 (in Chinese). | |
3 | 桂业伟. 高超声速飞行器综合热效应问题[J]. 中国科学: 物理学 力学 天文学, 2019, 49: 114702. |
GUI Y W. Combined thermal phenomena of hypersonic vehicle[J]. Scientia Sinica(Physics, Mechanics & Astronomy), 2019, 49: 114702 (in Chinese). | |
4 | LEWIS M T, HICKEY J P. Conjugate heat transfer in high-speed external flows: A review[J]. Journal of Thermophysics and Heat Transfer, 2023, 37(4): 697-712. |
5 | WIETING A R, HOLDEN M S. Experimental shock-wave interference heating on a cylinder at Mach 6 and 8[J]. AIAA Journal, 1989, 27(11): 1557-1565. |
6 | DECHAUMPHAI P, THORNTON E A, WIETING A R. Flow-thermal-structural study of aerodynamically heated leading edges[J]. Journal of Spacecraft and Rockets, 1989, 26(4): 201-209. |
7 | MILLER B, CROWELL A R, MCNAMARA J J. Loosely coupled time-marching of fluid-thermal-structural interactions[C]∥54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013. |
8 | MILLER B A, MCNAMARA J J. Loosely coupled time-marching of fluid-thermal-structural interactions with time-accurate CFD[C]∥Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015. |
9 | CHEN F, LIU H, ZHANG S T. Time-adaptive loosely coupled analysis on fluid-thermal-structural behaviors of hypersonic wing structures under sustained aeroheating[J]. Aerospace Science and Technology, 2018, 78: 620-636. |
10 | CHEN F, LIU H, ZHANG S T. Coupled heat transfer and thermo-mechanical behavior of hypersonic cylindrical leading edges[J]. International Journal of Heat and Mass Transfer, 2018, 122: 846-862. |
11 | MURTY M C, MANNA P, CHAKRABORTY D. Conjugate heat transfer analysis in high speed flows[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2013, 227(10): 1672-1681. |
12 | 张胜涛, 陈方, 刘洪. 基于多场耦合的飞行器热环境数值分析方法研究[J]. 空气动力学学报, 2014, 32(6): 861-867. |
ZHANG S T, CHEN F, LIU H. Multi-field coupling numerical analysis approach for aerothermal environment of hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2014, 32(6): 861-867 (in Chinese). | |
13 | 张胜涛, 陈方, 刘洪. 高超声速进气道前缘流场-热-结构耦合分析[J]. 空气动力学学报, 2017, 35(3): 436-444. |
ZHANG S T, CHEN F, LIU H. Fluid-thermal-structural coupling analysis on leading edge ohypersonic inlets[J]. Acta Aerodynamica Sinica, 2017, 35(3): 436-444 (in Chinese). | |
14 | 李芹, 杨肖峰, 董威, 等. 高超声速飞行器表面吸附特性对多相催化过程影响的数值模拟[J]. 上海交通大学学报, 2021, 55(11): 1352-1361. |
LI Q, YANG X F, DONG W, et al. Numerical simulation of influence of adsorption on surface heterogeneous catalysis process of hypersonic vehicles[J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1352-1361 (in Chinese). | |
15 | YANG X F, GUI Y W, XIAO G M, et al. Reacting gas-surface interaction and heat transfer characteristics for high-enthalpy and hypersonic dissociated carbon dioxide flow[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118869. |
16 | 王国林, 周印佳, 金华, 等. 催化效应对气动热环境影响的流动-传热耦合数值分析[J]. 实验流体力学, 2019, 33(3): 13-19. |
WANG G L, ZHOU Y J, JIN H, et al. Study on the influence of catalytic effect on the aerothermal environment by the flow-heat transfer coupling numerical analysis[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 13-19 (in Chinese). | |
17 | STERN E C. Microscale modeling of porous thermal protection system materials[D]. Minnesota: University of Minnesota-TwinCitie, 2015: 24-25. |
18 | WILDER M C, PRABHU D K. Rough-wall turbulent heat transfer experiments in hypersonic free flight[C]∥ AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
19 | XU Y J, REN S X, ZHANG W H. Thermal conductivities of plain woven C/SiC composite: Micromechanical model considering PyC interphase thermal conductance and manufacture-induced voids[J]. Composite Structures, 2018, 193: 212-223. |
20 | GAO X G, HAN X, SONG Y D. X-ray computed tomography based microstructure reconstruction and numerical estimation of thermal conductivity of 2.5D ceramic matrix composite[J]. Ceramics International, 2017, 43(13): 9790-9797. |
21 | 桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7): 020844. |
GUI Y W, LIU L, DAI G Y, et al. Research statusof hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 020844 (in Chinese). | |
22 | LIU Y, QU Z G, GUO J, et al. Numerical study on effective thermal conductivities of plain woven C/SiC composites with considering pores in interlaced woven yarns[J]. International Journal of Heat and Mass Transfer, 2019, 140: 410-419. |
23 | ZENG X S, BROWN L P, ENDRUWEIT A, et al. Geometrical modelling of 3D woven reinforcements for polymer composites: Prediction of fabric permeability and composite mechanical properties[J]. Composites Part A: Applied Science and Manufacturing, 2014, 56: 150-160. |
24 | WONG C C, LONG A C, SHERBURN M, et al. Comparisons of novel and efficient approaches for permeability prediction based on the fabric architecture[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(6): 847-857. |
25 | ZHANG C, WU K F, KONG X Z, et al. The effects of interfacial thermal contact resistance between yarns and matrixes on the thermophysical property of the plain woven C/SiC composite[J]. Applied Thermal Engineering, 2023, 229: 120600. |
26 | DONG K, LIU K, PAN L J, et al.. Experimental and numerical investigation on the thermal conduction properties of 2.5D angle-interlock woven composites[J]. Composite Structures, 2016, 154: 319-333. |
27 | DONG K, LIU K, ZHANG Q, et al. Experimental and numerical analyses on the thermal conductive behaviors of carbon fiber/epoxy plain woven composites[J]. International Journal of Heat and Mass Transfer, 2016, 102: 501-517. |
28 | BIRD R B, STEWART W E, LIGHTFOOT E N. Transport phenomena[M]. New York: John Wiley & Sons, 2007: 265-287. |
29 | 肖光明, 张超, 桂业伟, 等. 基于TLBM-FVM耦合的飞行器舱内热环境跨尺度预测方法[J]. 航空学报, 2021, 42(9): 625710. |
XIAO G M, ZHANG C, GUI Y W, et al. TLBM-FVM cross-scale method for thermal environment prediction of aircraft cabin[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625710 (in Chinese). | |
30 | 杨肖峰, 唐伟, 桂业伟, 等. 探路者号火星探测器气动热和传热耦合分析[J]. 工程热物理学报, 2014, 35(12): 2461-2465. |
YANG X F, TANG W, GUI Y W, et al. Coupled computation of aeroheating and heat transfer for Mars pathfinder entry vehicle[J]. Journal of Engineering Thermophysics, 2014, 35(12): 2461-2465 (in Chinese). | |
31 | 杨肖峰, 桂业伟, 刘磊, 等. 表面催化特性对火星进入气固耦合热效应的影响研究[J]. 中国科学: 技术科学, 2018, 48: 939-949. |
YANG X F, GUI Y W, LIU L, et al. Influence of surface catalysis on coupled aerodynamic heating for Mars entries[J]. Scientia Sinica(Technologica), 2018, 48: 939-949 (in Chinese). | |
32 | PAPADOPOULOS P, VENKATAPATHY E, PRABHU D, et al. Current grid-generation strategies and future requirements in hypersonic vehicle design, analysis and testing[J]. Applied Mathematical Modelling, 1999, 23(9): 705-735. |
33 | MEN’SHOV I S, NAKAMURA Y. Numerical simulations and experimental comparisons for high-speed nonequilibrium air flows[J]. Fluid Dynamics Research, 2000, 27(5): 305-334. |
34 | 张智超, 高振勋, 蒋崇文, 等. 高超声速气动热数值计算壁面网格准则[J]. 北京航空航天大学学报, 2015, 41(4): 594-600. |
ZHANG Z C, GAO Z X, JIANG C W, et al. Grid generation criterions in hypersonic aeroheating computations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 594-600 (in Chinese). | |
35 | NGO I L, PRABHAKAR VATTIKUTI S V, BYON C. Effects of thermal contact resistance on the thermal conductivity of core-shell nanoparticle polymer composites[J]. International Journal of Heat and Mass Transfer, 2016, 102: 713-722. |
/
〈 |
|
〉 |