Solid Mechanics and Vehicle Conceptual Design

Key technologies and prospects for separation dynamics of stacked satellite systems

  • Dongping JIN ,
  • Dingfeng DING ,
  • Lin WU ,
  • Hao WEN ,
  • Xiaotong ZHANG ,
  • Jialiang SUN
Expand
  • 1.College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing  210016,China
    2.State Key Laboratory of Mechanics and Control for Aerospace Structures,Nanjing  210016,China
    3.Shanghai Institute of Satellite Engineering,Shanghai  201109,China

Received date: 2024-09-30

  Revised date: 2024-10-09

  Accepted date: 2024-10-16

  Online published: 2024-10-29

Supported by

National Natural Science Foundation of China(12232011);Civil Aerospace Pre-research Project(D030201)

Abstract

Recent years have witnessed the rapid development of satellite internet constellation via low-orbit communication satellites in the main aerospace industries of various countries. For efficient construction of the satellite internet constellation, researchers from the main aerospace industries focus on the technologies of multi-satellite launch of stacked satellite system, as well as autonomous separation and reconfiguration on orbit. Therefore, this paper reviews the application requirements and launch merits of stacked satellites, and introduces the development of the launched stacked satellites all over the world. For the challenges of on orbit separation, this paper also presents the configuration design of the stacked satellites and the optimization design of separation mechanisms. For the separation dynamics of the stacked satellites, the paper outlines the dynamic modeling and simulation methods for the system before separation, the rigid multibody system during separation, and most importantly, the contact detection algorithms during separation. For the ground experiment validations, the paper briefly exhibits the experiment platform and results for separations of two satellites between layers and in the same layer. Finally, the key technologies of stacked satellites separation dynamics are summarized, and several frontier directions for further study are highlighed.

Cite this article

Dongping JIN , Dingfeng DING , Lin WU , Hao WEN , Xiaotong ZHANG , Jialiang SUN . Key technologies and prospects for separation dynamics of stacked satellite systems[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(5) : 531342 -531342 . DOI: 10.7527/S1000-6893.2024.31342

References

1 谢涛, 余东峰, 李云鹏, 等. 星链与星舰启示和我国商业航天探索[J]. 卫星应用2023(5): 45-50.
  XIE T, YU D F, LI Y P, et al. Enlightenment of star chain and starship and China’s commercial space exploration?[J]. Satellite Application2023(5): 45-50 (in Chinese).
2 袁浚. 低轨卫星互联网研究与应用展望[J]. 广播与电视技术202249(11): 33-35.
  YUAN J. Research and application prospect of low-orbit satellite Internet [J]. Radio & TV Broadcast Engineering202249(11): 33-35 (in Chinese).
3 张更新, 王运峰, 丁晓进, 等. 卫星互联网若干关键技术研究[J]. 通信学报202142(8): 1-14.
  ZHANG G X, WANG Y F, DING X J, et al. Research on several key technologies of satellite Internet[J]. Journal on Communications. 202142(8): 1-14 (in Chinese).
4 蒋瑞红, 冯一哲, 孙耀华, 等. 面向低轨卫星网络的组网关键技术综述[J]. 电信科学202339(2): 37-47.
  JIANG R H, FENG Y Z, SUN Y H, et al. A survey on networking key technologies for LEO satellite network[J]. Telecommunications Science202339(2): 37-47 (in Chinese).
5 张鑫伟, 付郁. 2020年全球航天发射统计分析[J]. 国际太空2021(2): 18-23.
  ZHANG X W, FU Y. Statistical analysis of global space launch in 2020[J]. Space International2021(2): 18-23 (in Chinese).
6 陈牧野, 牟宇, 周宁, 等. “星链”堆叠式卫星连接与分离技术及应用[J]. 国际太空2022(4): 24-28.
  CHEN M Y, MOU Y, ZHOU N, et al. Technology and application of “Star Link” stackable satellite connection and separation[J]. Space International2022(4): 24-28 (in Chinese).
7 王峰, 叶水驰, 曹喜滨. 一箭多星发展现状综述及核心技术分析[C]∥2013年空间光学与机电技术研讨会. 西安: 中国空间科学学会, 2013: 6.
  WANG F, YE S C, CAO X B. Summary of development status and core technology analysis of multiple satellites with one arrow[C]∥Proceedings of the 2013 Symposium on Space Optics and Mechatronics of the Chinese Society of Space Science. Xi’an: Chinese Society of Space Science, 2013: 6 (in Chinese).
8 张兵, 岑拯. 多星分离的ADAMS仿真[J]. 导弹与航天运载技术2004(2): 1-6.
  ZHANG B, CEN Z. The ADAMS simulation of multi-satellite separation system[J]. Missiles and Space Vehicles2004(2): 1-6 (in Chinese).
9 丁继锋. 星箭分离缓冲设计方法及试验验证研究[J]. 强度与环境201643(2): 17-24.
  DING J F. Shock isolation of satellite-rocket separation and its test verification[J]. Structure & Environment Engineering201643(2): 17-24 (in Chinese).
10 王金昌, 闫波, 张佳, 等. 基于虚拟样机的多星分离仿真分析[J]. 中国空间科学技术201636(6): 70-76.
  WANG J C, YAN B, ZHANG J, et al. Multi-satellite separation simulation based on virtual prototype[J]. Chinese Space Science and Technology201636(6): 70-76 (in Chinese).
11 李烁, 刘焱, 胡冬生, 等. 国外微纳运载火箭发展现状及趋势分析[J]. 中国航天2020(2): 38-42.
  LI S, LIU Y, HU D S, et al. Development status and trend analysis of micro-nano launch vehicles abroad[J]. Aerospace China2020(2): 38-42 (in Chinese).
12 刘悦. “下一代铱星” 系统首批10颗卫星成功发射[J]. 国际太空2017(4): 52-54.
  LIU Y. The first 10 satellites of iridium NEXT launched successfully[J]. Space International2017(4): 52-54 (in Chinese).
13 王羽, 李清, 李克军, 等. Starlink星座应用现状及分析[J]. 天地一体化信息网络20234(2): 93-102.
  WANG Y, LI Q, LI K J, et al. Application status and analysis of Starlink constellation[J]. Space-Integrated-Ground Information Network20234(2): 93-102 (in Chinese).
14 付郁, 张继荣. 2022年全球航天发射统计分析[J]. 国际太空2023(2): 6-12.
  FU Y, ZHANG J R. Statistical analysis of global space launch in 2022[J]. Space International2023(2): 6-12 (in Chinese).
15 张炎, 宋战锋. 英国“天网”军用通信卫星系统[J]. 国际太空2009(1): 14-20.
  ZHANG Y, SONG Z F. British Skynet military communication satellite system[J]. Space International2009(1): 14-20 (in Chinese).
16 龚宇鹏. 低轨巨型星座构型设计及覆盖分析方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
  GONG Y P. Research on configuration design and coverage analysis method of LEO giant constellation[D].Harbin: Harbin Institute of Technology, 2022 (in Chinese).
17 王存恩. 日本 “一箭多星” 发射现状及典型实例分析[J]. 国际太空2015(10): 23-28.
  WANG C E. Case study of Japan’s multi-payload launch[J]. Space International2015(10): 23-28 (in Chinese).
18 刘进军. 多星发射与世界航天纪录[J]. 卫星电视与宽带多媒体2013(12): 18-22.
  LIU J J. Multi-satellite launch and World Space Record [J]. Satellite TV & IP Multimedia2013(12): 18-22 (in Chinese).
19 黄志澄. 印度太空力量的新发展[J]. 国际太空2021(1): 52-58.
  HUANG Z C. New development of Indian space power[J]. Space International2021(1): 52-58 (in Chinese).
20 兰顺正. 中国航天再破记录, “一箭多星”技术更上一层楼[J]. 世界知识2023(14): 72-73.
  LAN S Z. China’s space has broken another record, and the “one arrow and multiple stars” technology has reached a new level[J]. World Affairs2023(14): 72-73 (in Chinese).
21 黄志澄. 长征-6运载火箭开启我国航天新” 长征”[J]. 国际太空2015(10): 34-35.
  HUANG Z C. CZ-6 rocket starts China’s new long March[J]. Space International2015(10): 34-35 (in Chinese).
22 孙洪雨, 李小明, 柳萌. “一箭41星” 发射的关键要素分析[J]. 国际太空2024(3): 47-52.
  SUN H Y, LI X M, LIU M. Analysis of key elements of “one arrow and 41 satellites” launch[J]. Space International2024(3): 47-52 (in Chinese).
23 柏亮. 卫星互联网的技术体系、发展趋势与应用[J]. 通信电源技术202037(7): 181-183.
  BAI L. Technology system and development trend and application of satellite Internet[J]. Telecom Power Technology202037(7): 181-183 (in Chinese).
24 朱剑涛, 林益明. 适合于 “一箭多星” 发射的卫星构型特点综述[J]. 国际太空2007(6): 23-29.
  ZHU J T, LIN Y M. Summary of satellite configuration characteristics suitable for “one arrow and multiple satellites” launch[J]. Space International2007(6): 23-29 (in Chinese).
25 姚延风, 裴胜伟, 李东泽, 等. “一箭多星” 发射低地球轨道卫星的构型优化设计方法[J]. 航天器工程201625(3): 32-39.
  YAO Y F, PEI S W, LI D Z, et al. Configuration optimization design method of LEO satellite of multi-satellite launch[J]. Spacecraft Engineering201625(3): 32-39 (in Chinese).
26 吴胜宝, 胡冬生. 国外 “一箭多星” 发射现状及关键技术分析[J]. 国际太空2015(10): 18-22.
  WU S B, HU D S. Current situation and key technology of multi-payload launch missions[J]. Space International2015(10): 18-22 (in Chinese).
27 杨谋祥, 郝芳. 航天火工装置[J]. 航天返回与遥感199920(4): 37-40.
  YANG M X, HAO F. Space pyrotechnics devices[J]. Spacecraft Recovery and Remote Sensing199920(4): 37-40 (in Chinese).
28 王军评, 毛勇建, 黄含军. 点式火工分离装置冲击载荷作用机制的数值模拟研究[J]. 振动与冲击201332(2): 9-13, 32.
  WANG J P, MAO Y J, HUANG H J. Numerical simulation for impulsively loading mechanism of a point pyrotechnic separation device[J]. Journal of Vibration and Shock201332(2): 9-13, 32 (in Chinese).
29 温洋. 某航天火工装置可靠性分析与评估方法研究[D]. 北京: 北京理工大学, 2015.
  WEN Y. Research on reliability analysis and evaluation method of an aerospace initiating explosive device[D].Beijing: Beijing Institute of Technology, 2015 (in Chinese).
30 高庆, 陈新民, 赵永辉. 线式分离结构高应力释放对高频冲击环境的影响分析[J]. 振动与冲击201635(21): 166-170.
  GAO Q, CHEN X M, ZHAO Y H. Influences of higher stress relaxation of separating structures on high frequency shock environments[J]. Journal of Vibration and Shock201635(21): 166-170 (in Chinese).
31 冯丽娜, 李东, 田建东, 等. 基于变形圆筒实验的扁平管组件能量输出效率研究[J]. 振动与冲击202039(23): 176-181.
  FENG L N, LI D, TIAN J D, et al. Energy output efficiency of flat tube assembly based on deformable cylinder experiment[J]. Journal of Vibration and Shock202039(23): 176-181 (in Chinese).
32 王军评, 毛勇建, 吕剑, 等. 爆炸螺栓冲击响应的主要影响因素研究[J]. 振动与冲击201938(13): 42-49.
  WANG J P, MAO Y J, LYU J, et al. Main influence factors on pyrotechnic-shock response of explosive bolts[J]. Journal of Vibration and Shock201938(13): 42-49 (in Chinese).
33 唐科, 胡振兴, 曲展龙, 等. 典型航天火工装置降冲击技术研究[J]. 宇航总体技术20226(5): 1-9.
  TANG K, HU Z X, QU Z L, et al. Research on shock reduction technology of typical aerospace explosive devices[J]. Astronautical Systems Engineering Technology20226(5): 1-9 (in Chinese).
34 唐科, 汪锐琼, 曲展龙, 等. 温度-湿度-高度环境对航天火工装置性能的影响[J]. 装备环境工程202219(2): 7-13.
  TANG K, WANG R Q, QU Z L, et al. Influence of temperature-humidity-altitude environment on the performance of aerospace explosive devices[J]. Equipment Environmental Engineering202219(2): 7-13 (in Chinese).
35 LUNA A. Operational improvements of a pyrotechnic ultra low shock separation nut[C]∥Proceedings of the 36th Aerospace Mechanisms Symposium. 2002: 131-136.
36 仲作阳, 张海联, 周建平, 等. 航天器非火工连接分离技术研究综述[J]. 载人航天201925(1): 128-142.
  ZHONG Z Y, ZHANG H L, ZHOU J P, et al. Review of non-pyrotechnic connection and separation technology of spacecraft[J]. Manned Spaceflight201925(1): 128-142 (in Chinese).
37 白志富, 果琳丽, 陈岱松. 新型非火工星箭连接分离技术[J]. 导弹与航天运载技术2009(1): 31-37.
  BAI Z F, GUO L L, CHEN D S. Late-model non-pyrotechnic devices for separation of satellite-launching vehicle[J]. Missiles and Space Vehicles2009(1): 31-37 (in Chinese).
38 CHAPUT D, VISCONTI M, EDWARDS M. Payload hold-down and release mechanisms[C]∥28th Aerospace Mechanisms Symposium. 1994: 395-411.
39 赵正阳, 苌群峰, 冯萃峰, 等. 微纳卫星聚合体分体式锁紧分离方案研究与验证[J]. 机械设计202340(S2): 109-113.
  ZHAO Z Y, CHANG Q F, FENG C F, et al. Research and verification of split locking separation scheme for micro-nano-satellite polymers[J]. Journal of Machine Design202340(S2): 109-113 (in Chinese).
40 Separation Systems Rocket Lab[EB/OL]. [2024-09-20]. .
41 YOO Y I, JEONG J W, LIM J H, et al. Development of a non-explosive release actuator using shape memory alloy wire[J]. The Review of Scientific Instruments201384(1): 015005.
42 LUCY M, HARDY R C, KIST E, et al. Report on alternative devices to pyrotechnics on spacecraft[C]∥10th Annual AIAA/USU Conference on Small Satellites, 1996.
43 VáZQUEZ J, BUENO I. Non explosive low shock reusable 20 kN Hold-down release actuator[C]∥9th European Space Mechanisms and Tribology Symposium. 2001.
44 WEBSTER R G. No-shock separation mechanism: US5248233[P]. 1993-09-28.
45 GALL K, LAKE M, HARVEY J, et al. Development of a shockless thermally actuated release nut using elastic memory composite material[C]∥44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003.
46 胡晓楠, 吴君, 彭金圣, 等. 基于记忆合金的大承载低冲击解锁机构设计与试验研究[J]. 科学技术与工程201616(30): 319-323.
  HU X N, WU J, PENG J S, et al. Design and experimental research of a large load and low shock release device on shape memory alloy[J]. Science Technology and Engineering201616(30): 319-323 (in Chinese).
47 江晋民. 基于形状记忆合金的低冲击大承载压紧释放装置研究[D]. 哈尔滨工业大学, 2012.
  JIANG J M. Research on low shock and large load hold-down/release mechanism based on shape memory alloy[D]. Harbin: Harbin Institute of Technology (in Chinese).
48 TUSZYNSKI A. Alternatives to pyrotechnics-nitinol release mechanisms[C]∥Proceedings of the 36th Aerospace Mechanisms Symposium. 2002: 137-139.
49 LEE M S, JO J U, TAK W J, et al. Shape memory alloy (SMA) based non-explosive separation actuator (NEA) with a redundant function[J]. International Journal of Precision Engineering and Manufacturing201112(3): 569-572.
50 TAK W, LEE M S, KIM B. Ultimate load and release time controllable non-explosive separation device using a shape memory alloy actuator[J]. Journal of Mechanical Science and Technology201125(5): 1141-1147.
51 LEE M H, SON J H, KIM Y W, et al. Shape memory alloy actuator and spiral spring based separation actuator for small satellite[J]. Journal of the Korean Society for Aviation and Aeronautics201119(3): 10-15.
52 BUSCH J D, BOKAIE M. Implementation of heaters on thermally actuated spacecraft mechanisms[C]∥The 28th Aerospace Mechanisms Symposium, 1994.
53 LEES J, SCHAEFER E. Design and testing of the CRISP tracking mirror cover and release mechanism[C]∥Proceeding of the 36th Aerospace Mechanisms Symposium, 2002: 63-76.
54 PURDY W. The clementine mechanisms william purdy and michael hurley[C]∥The 29th Aerospace Mechanisms Symposium, 1995: 109.
55 CREMERS J, GOOIJER E, KESTER G. Special functions: Multipurpose hold down and release mechanism (MHRM) [C]∥8th European Space Mechanisms and Tribology Symposium, 1999.
56 STEWART A, BRODEUR S J. A new and innovative use of the thermal knife and Kevlar cord components in a restraint and release system[C]?∥9th European Space Mechanisms and Tribology Symposium, 2001.
57 蔡逢春, 孟宪红. 用于连接与分离的非火工装置[J]. 航天返回与遥感200526(4): 50-55.
  CAI F C, MENG X H. Non- pyrotechnic device for joining and separating[J]. Spacecraft Recovery & Remote Sensing200526(4): 50-55 (in Chinese).
58 LAN W, BROWN J, TOORIAN A, et al. CubeSat development in education and into industry[C]∥Space 2006. Reston: AIAA, 2006.
59 TOORIAN A, BLUNDELL E, PUIG-SUARI J, et al. CubeSats as responsive satellites[C]∥Space 2005. Reston: AIAA, 2005.
60 尚立斌, 王安平, 王珂, 等. 基于液态金属的锁紧/解锁装置在空间展开机构中的应用[J]. 载人航天201723(4): 572-576.
  SHANG L B, WANG A P, WANG K, et al. Application of locking/unlocking device based on liquid metal in space deployable mechanism[J]. Manned Spaceflight201723(4): 572-576 (in Chinese).
61 陈靖, 张翔, 陈卫东, 等. 微小卫星解锁分离装置主结构设计分析及优化[J]. 航天器环境工程201229(6): 681-686.
  CHEN J, ZHANG X, CHEN W D, et al. Main structural design analysis and optimization of connection and separation mechanism of minisatellite[J]. Spacecraft Environment Engineering201229(6): 681-686 (in Chinese).
62 杜正刚, 娄路亮, 张立强, 等. 冷气分离装置设计参数对冲量的影响[J]. 导弹与航天运载技术2011(4): 1-3.
  DU Z G, LOU L L, ZHANG L Q, et al. Effect of cold-gas separating device design parameters on impulse[J]. Missiles and Space Vehicles2011(4): 1-3 (in Chinese).
63 崔垚. 航天器低冲击分离控制技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
  CUI Y. Research on low impact separation control technology of spacecraft[D]. Harbin: Harbin Institute of Technology, 2014 (in Chinese).
64 陈金宝, 霍伟航, 陈传志, 等. 堆叠式多星分离动力学研究[J]. 机械制造与自动化202352(2): 7-10.
  CHEN J B, HUO W H, CHEN C Z, et al. Dynamic analysis of stacked multi-satellite separation[J]. Machine Building & Automation202352(2): 7-10 (in Chinese).
65 姜周, 卢松涛, 吕鹏伟, 等. 一种多星分离的姿控联合仿真方法[J]. 宇航总体技术20248(2): 59-65.
  JIANG Z, LU S T, LYU P W, et al. A joint simulation method for multi-satellite separation with attitude control[J]. Astronautical Systems Engineering Technology20248(2): 59-65 (in Chinese).
66 LILOV L, LORER M. Dynamic analysis of multirigid-body system based on the Gauss principle[J]. ZAMM - Journal of Applied Mathematics and Mechanics198262(10): 539-545.
67 HAUG E J. Computer aided kinematics and dynamics of mechanical systems[M]. Boston: Allyn and Bacon, 1989.
68 ZHANG X L, SUN J L, JIN D P, et al. Dynamics of reconfiguration and assembly of a stacked satellite system[J]. Acta Astronautica2024218: 367-382.
69 孙加亮, 张晓亮, 金栋平. 堆叠卫星的分离与重构动力学研究[J]. 应用数学和力学202445(1): 1-11.
  SUN J L, ZHANG X L, JIN D P. Separation and reconfiguration dynamics of stacked satellites[J]. Applied Mathematics and Mechanics202445(1): 1-11 (in Chinese).
70 罗操群, 孙加亮, 文浩, 等. 多刚体系统分离策略及释放动力学研究[J]. 力学学报202052(2): 503-513.
  LUO C Q, SUN J L, WEN H, et al. Research on separation strategy and deployment dynamics of a space multi-rigid-body system[J]. Chinese Journal of Theoretical and Applied Mechanics202052(2): 503-513 (in Chinese).
71 SUN J L, TAN S, WEN H, et al. Contact-free release dynamics of tens of stacked satellites with multiaxial rotations[J]. Advances in Space Research202371(1): 492-506.
72 LUO C Q, SUN J L, WEN H, et al. Autonomous separation deployment dynamics of a space multi-rigid-body system with uncertain parameters[J]. Mechanism and Machine Theory2023180: 105175.
73 LEE T, MCCLAMROCH N H, LEOK M. A lie group variational integrator for the attitude dynamics of a rigid body with applications to the 3D pendulum[C]∥Proceedings of 2005 IEEE Conference on Control Applications, 2005. Piscataway: IEEE Press, 2005.
74 NORDKVIST N, SANYAL A K. A lie group variational integrator for rigid body motion in SE(3) with applications to underwater vehicle dynamics[C]∥49th IEEE Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2010: 5414-5419.
75 丁希仑, 刘颖. 用李群李代数分析具有空间柔性变形杆件的机器人动力学[J]. 机械工程学报200743(12): 184-189.
  DING X L, LIU Y. Dynamic analysis of robot with spatial compliant links using lie group and lie algebra[J]. Journal of Mechanical Engineering200743(12): 184-189 (in Chinese).
76 白龙, 董志峰, 戈新生. 基于Lie群的刚体动力学建模及数值计算方法研究[J]. 应用数学和力学201536(8): 833-843.
  BAI L, DONG Z F, GE X S. Lie group and lie algebra modeling for numerical calculation of rigid body dynamics[J]. Applied Mathematics and Mechanics201536(8): 833-843 (in Chinese).
77 张继锋, 邓子辰, 张凯. 结构动力方程求解的改进精细Runge-Kutta方法[J]. 应用数学和力学201536(4): 378-385.
  ZHANG J F, DENG Z C, ZHANG K. An improved precise Runge-Kutta method for structural dynamic equations[J]. Applied Mathematics and Mechanics201536(4): 378-385 (in Chinese).
78 黄子恒, 陈菊, 张志娟, 等. 多刚体动力学仿真的李群变分积分算法[J]. 动力学与控制学报202220(1): 8-17.
  HUANG Z H, CHEN J, ZHANG Z J, et al. Lie group variational integration for multi-rigid body system dynamics simulation[J]. Journal of Dynamics and Control202220(1): 8-17 (in Chinese).
79 田龙飞, 李华, 刘武, 等. 基于重要性测度的一箭多星分离安全性分析[J]. 中国科学(技术科学)201949(7): 803-814.
  TIAN L F, LI H, LIU W, et al. Study on safety of multi-satellite launch mission based on importance measure[J]. Scientia Sinica (Technologica)201949(7): 803-814 (in Chinese).
80 杨慧, 周静, 马利. 一箭多星发射飞行间距预示方法研究[J]. 航天器工程201726(4): 1-6.
  YANG H, ZHOU J, MA L. Study on prediction of spacing between satellites in the multi-satellite launch missions[J]. Spacecraft Engineering201726(4): 1-6 (in Chinese).
81 BRIDGES C P, SAUTER L, PALMER P. Formation deployment & separation simulation of multi-satellite Scenarios using SatLauncher[C]∥2011 Aerospace Conference. Piscataway: IEEE Press, 2011: 1-9.
82 张晓亮, 张晓彤, 刘福寿, 等. 卫星在轨分离地面试验方案设计及动态仿真分析[J]. 上海航天(中英文)202340(2): 32-40.
  ZHANG X L, ZHANG X T, LIU F S, et al. Ground experiment design and dynamic simulation analysis for separation of in-orbit satellite[J]. Aerospace Shanghai (Chinese & English)202340(2): 32-40 (in Chinese).
83 张晓亮. 堆叠卫星分离与重构组装动力学研究[D].南京: 南京航空航天大学, 2024.
  ZHANG X L. Dynamics of reconfiguration and assembly of a stacked satellites system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2024 (in Chinese).
Outlines

/