Fluid Mechanics and Flight Mechanics

Enhanced hybrid vortex particle method for aerodynamic analysis of tiltrotor rotor/wing interactions

  • Yifan YANG ,
  • Xiao WANG
Expand
  • National Key Laboratory of Helicopter Aeromechanics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
E-mail: x.wang@nuaa.edu.cn

Received date: 2024-08-05

  Revised date: 2024-09-04

  Accepted date: 2024-10-24

  Online published: 2024-10-29

Supported by

National Level Project(XYZX040401);National Natural Science Foundation of China(12272169);Key Laboratory of Cross-Domain Flight Interdisciplinary Technology(2024-KF03001)

Abstract

Aiming to elucidate the complex aerodynamic interactions between rotor and wing during hovering, forward flight, and transition modes of tiltrotor aircraft, an enhanced hybrid vortex particle method is developed. This method leverages Neumann boundary conditions and Hess equivalence principle for efficient computational analysis. By incorporating a single panel-multi vortex particles conversion and adaptive vortex particle quantity control, the adaptive adjustment of vortex particle quantity is achieved, further optimizing the computational efficiency.Validation against wind tunnel data demonstrates precision and efficiency of the method compared to traditional viscoelastic vortex particle methods. Subsequent numerical simulations and flow field analysis of the rotor/wing model unveil intricate aerodynamic interactions. In hovering mode, while the wing’s blocked downwash slightly enhances rotor lift, the dominant negative lift due to significant wing download adversely impacts overall load-carrying capacity. Increasing collective pitch mitigates this lift loss. During transition, the rotor wake initially induces substantial lift loss on the wing, followed by a notable increase and negligible influence in later phases. The wings alter structure of the rotor wake, but the effect on rotor performance is minimal. In forward flight, rotor/wing aerodynamic interactions is weak, albeit with a reduced lift-to-drag ratio. These findings provide valuable insights into the aerodynamic complexities of tiltrotor aircraft, contributing to the development of aeroelastic stability analysis, high-fidelity flight dynamics model development and performance optimization.

Cite this article

Yifan YANG , Xiao WANG . Enhanced hybrid vortex particle method for aerodynamic analysis of tiltrotor rotor/wing interactions[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(7) : 131040 -131040 . DOI: 10.7527/S1000-6893.2024.31040

References

1 邓景辉. 电动垂直起降飞行器的技术现状与发展[J]. 航空学报202445(5): 529937.
  DENG J H. Technical status and development of electric vertical take-off and landing aircraft[J]. Acta Aeronautica et Astronautica Sinica202445(5): 529937 (in Chinese).
2 Uber Technologies Inc. Uber Elevate Summit 2017[EB/OL]. [2024-08-05]. .
3 朱炳杰, 杨希祥, 宗建安, 等. 分布式混合电推进飞行器技术[J]. 航空学报202243(7): 025556.
  ZHU B J, YANG X X, ZONG J A, et al. Review of distributed hybrid electric propulsion aircraft technology[J]. Acta Aeronautica et Astronautica Sinica202243(7): 025556 (in Chinese).
4 CHAUHAN S S, MARTINS J R R A. Tilt-wing eVTOL takeoff trajectory optimization[J]. Journal of Aircraft202057(1): 93-112.
5 JOHNSON W, YAMAUCHI G, DERBY M, et al. Wind tunnel measurements and calculations of aerodynamic interactions between tiltrotor aircraft: AIAA-2003-0047[R]. Reston: AIAA, 2003.
6 MATUSKA D, DALE A, LORBER P. Wind tunnel test of a variable-diameter tiltrotor (VDTR) model: NASA-CR-177629[R]. Washington, D.C.: NASA, 1994.
7 FELKER F F, LIGHT J S. Aerodynamic interactions between a rotor and wing in hover[J]. Journal of the American Helicopter Society198833(2): 53-61.
8 DARABI A, STALKER A, MCVEIGH M, et al. The rotor wake above a tiltrotor airplane-model in hover: AIAA-2003-3596[R]. Reston: AIAA, 2003.
9 张铮, 陈仁良. 倾转旋翼机旋翼/机翼气动干扰理论与试验[J]. 航空学报201738(3): 120196.
  ZHANG Z, CHEN R L. Theory and test of rotor/wing aero-interaction in tilt-rotor aircraft[J]. Acta Aeronautica et Astronautica Sinica201738(3): 120196 (in Chinese).
10 HUANG Q J, HE G Y, JIA J K, et al. Numerical simulation on aerodynamic characteristics of transition section of tilt-wing aircraft[J]. Aerospace202411(4): 283.
11 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计[J]. 航空学报201435(11): 2910-2920.
  XU J K, BAI J Q, HUANG J T, et al. Aerodynamic optimization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica201435(11): 2910-2920 (in Chinese).
12 THOUAULT N, BREITSAMTER C, ADAMS N A. Numerical and experimental analysis of a generic fan-in-wing configuration[J]. Journal of Aircraft200946(2): 656-666.
13 LIU T L, PAN K C. Application of the sliding mesh technique for helicopter rotor flow simulation[J]. Journal of Aeronautics, Astronautics and Aviation201244(3): 201-209.
14 WANG H L, ZHAO Q J, ZHAO G Q, et al. Analyses on aerodynamic interactions of quad-tiltrotor aircraft with variable RPM and diameter[C]∥2021 Asia-Pacific International Symposium on Aerospace Technology. Singapore: Springer, 2023: 527-539.
15 WU Z L, LI C, CAO Y H. Numerical simulation of rotor-wing transient interaction for a tiltrotor in the transition mode[J]. Mathematics20197(2): 116.
16 POTSDAM M, YEO H, JOHNSON W. Rotor airloads prediction using loose aerodynamic/structural coupling[J]. Journal of Aircraft200643(3): 732-742.
17 GAONKAR G, PETERS D. Review of dynamic inflow modeling for rotorcraft flight dynamics: AIAA-1986-0845[R]. Reston: AIAA, 1986.
18 GAONKAR G H, PETERS D A. Effectiveness of current dynamic-inflow models in hover and forward flight[J]. Journal of the American Helicopter Society198631(2): 47-57.
19 PETERS D A, MORILLO J A, NELSON A M. New developments in dynamic wake modeling for dynamics applications[J]. Journal of the American Helicopter Society200348(2): 120-127.
20 WANG Y R, PETERS D A. The lifting rotor inflow mode shapes and blade flapping vibration system eigen-analysis[J]. Computer Methods in Applied Mechanics and Engineering1996134(1/2): 91-105.
21 KELLER J D. An investigation of helicopter dynamic coupling using an analytical model[J]. Journal of the American Helicopter Society199641(4): 322-330.
22 PETERS D A, BOYD D D, HE C J. Finite-state induced-flow model for rotors in hover and forward flight[J]. Journal of the American Helicopter Society198934(4): 5-17.
23 KOCUREK J D, TANGLER J L. A prescribed wake lifting surface hover performance analysis[J]. Journal of the American Helicopter Society197722(1): 24-35.
24 QUACKENBUSH T R, BLISS D B, ONG C C, et al. Free wake analysis of hover performance using a new influence coefficient method: NASA-CR-4309[R]. Washington, D.C.: NASA, 1990.
25 徐国华. 应用自由尾迹分析的新型桨尖旋翼气动特性研究[D]. 南京: 南京航空航天大学, 1996.
  XU G H. Study on aerodynamic characteristics of a new type of tip rotor using free wake analysis[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 1996 (in Chinese).
26 KRASNY R. Computation of vortex sheet roll-up in the Trefftz plane?[J]. Journal of Fluid Mechanics1987184: 123-155.
27 LEONARD A. Vortex methods for flow simulation[J]. Journal of Computational Physics198737(3): 289-335.
28 CHATELAIN P, BRICTEUX L, BACKAERT S, et al. Vortex particle-mesh methods with immersed lifting lines applied to the LES of wind turbine wakes[C]∥ Wake Conference 2011. 2011.
29 谭剑锋, 王浩文, 吴超, 等. 基于非定常面元/黏性涡粒子混合法的旋翼/平尾非定常气动干扰[J]. 航空学报201435(3): 643-656.
  TAN J F, WANG H W, WU C, et al. Rotor/empennage unsteady aerodynamic interaction with unsteady panel/viscous vortex particle hybrid method[J]. Acta Aeronautica et Astronautica Sinica201435(3): 643-656 (in Chinese).
30 王红波, 祝小平, 周洲, 等. 基于非定常面元/黏性涡粒子法的低雷诺数滑流气动干扰[J]. 航空学报201738(4): 120412.
  WANG H B, ZHU X P, ZHOU Z, et al. Aerodynamic interactions at low Reynolds number slipstream with unsteady panel/viscous vortex particle method[J]. Acta Aeronautica et Astronautica Sinica201738(4): 120412 (in Chinese).
31 徐川, 刘长文, 鲁可, 等. 基于黏性涡粒子尾迹模型的高速直升机配平特性分析[J]. 航空科学技术202334(5): 38-45.
  XU C, LIU C W, LU K, et al. Trim characteristics analysis on high-speed helicopter using viscous vortex particles wake model[J]. Aeronautical Science & Technology202334(5): 38-45 (in Chinese).
32 KATZ J, PLOTKIN A. Low-speed aerodynamics[M]. 2nd ed. Cambridge: Cambridge University Press, 2001.
33 ZHU W G, MORANDINI M, LI S. Viscous vortex particle method coupling with computational structural dynamics for rotor comprehensive analysis[J]. Applied Sciences202111(7): 3149.
34 HESS J L, SMITH A M O. Calculation of nonlifting potential flow about arbitrary three-dimensional bodies[J]. Journal of Ship Research19648(4): 22-44.
35 HE C J, ZHAO J G. Modeling rotor wake dynamics with viscous vortex particle method[J]. AIAA Journal200947(4): 902-915.
36 王有江. 螺旋桨水动力性能及流场分析的面元-涡粒子耦合算法研究[D]. 西安: 西北工业大学, 2017.
  WANG Y J. Study on coupling algorithm of panel and vortex particles for hydrodynamic performance and flow field analysis of propeller[D]. Xi’an: Northwestern Polytechnical University, 2017 (in Chinese).
37 HESS J. Calculation of potential flow about arbitrary three-dimensional lifting bodies: MDC-J0971-01[R]. Alexandria: National Technical Information Service, 1972.
38 PERDOLT D. Efficient aerodynamic modeling process for a tilt-wing eVTOL using a mid-fidelity computational tool[D]. Munich: Technical University of Munich, 2022.
39 WANG Y J, ABDEL-MAKSOUD M, SONG B W. Simulating marine propellers with vortex particle method[J]. Physics of Fluids201729(1): 017103.
40 刘乾, 刘汉儒, 李家辉, 等. 基于面元-涡粒子法的螺旋桨气动特性及噪声研究[J]. 西北工业大学学报202240(4): 778-786.
  LIU Q, LIU H R, LI J H,et al.Research on aerodynamics and aeroacoustics of propeller based on panel-vortex particle method[J]. Journal of Northwestern Polytechnical University202240(4): 778-786 (in Chinese).
41 CARADONNA F X, TUNG C. Experimental and analytical studies of a model helicopter rotor in hover: NASA-TM-81232[R]. Washington, D.C.: NASA, 1981.
42 BRAND A G, MCMAHON H M, KOMERATH N M. Surface pressure measurements on a body subject to vortex wake interaction[J]. AIAA Journal198927(5): 569-574.
43 DOERFFER P, SZULC O. Numerical simulation of model helicopter rotor in hover[J]. Task Quarterly Scientific Bulletin of Academic Computer Centre in Gdansk200812(3/4): 227-236.
44 FELKER F F, SIGNOR D B, YOUNG L A, et al. Performance and loads data from a hover test of a 0.658-scale V-22 rotor and wing: NASA-TM-89419[R]. Washington, D.C.: NASA, 1987.
45 陈皓. 倾转旋翼机过渡模式下非定常气动力数值模拟[D]. 南京: 南京航空航天大学, 2018.
  CHEN H. Numerical simulation of unsteady aerodynamics of tilting rotorcraft in transition mode[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese).
46 CHOI S W, KIM J M. Investigation into the aerodynamic performance of the tiltrotor unmanned aerial vehicle proprotor[J]. Journal of Aircraft201047(3): 1083-1086.
47 ZHANG Y, YE L, YANG S. Numerical study on flow fields and aerodynamics of tilt rotor aircraft in conversion mode based on embedded grid and actuator model[J]. Chinese Journal of Aeronautics201528(1): 93-102.
48 BRAMWELL A R S, BALMFORD D, DONE G. Bramwell’s helicopter dynamics[M]. Amsterdam: Elsevier, 2001.
Outlines

/