ACTA AERONAUTICAET ASTRONAUTICA SINICA >
High-precision numerical simulation of fan rotor-stator interaction pure tone
Received date: 2024-07-01
Revised date: 2024-08-28
Accepted date: 2024-10-16
Online published: 2024-10-29
Supported by
National Natural Science Foundation of China(51876003);National Science and Technology Major Project (J2019-?II-0006-0026);Science Center for Gas Turbine Project of China(P2022-A-II-003-001)
The rotor-stator interaction pure tone is a major component of fan noise. A deep understanding of its generation mechanism, and high-precision simulation and prediction are topics of mutual concern in both academia and industry. The high-order spectral difference method is used to conduct high-precision numerical simulations of fan rotor-stator interaction pure tone. Compared with experimental results, the numerical simulations accurately predict the main mode components of the rotor-stator interaction pure tone. The sound power level errors for the first three Blade Passing Frequency (BPF) dominant modes are -1.2, +0.8, -2.1 dB, respectively. Among all the “CUT-ON” modes within the first three BPFs, the proportion of modes with PWL error below 5 dB is 86%, 35%, and 30%, respectively. Detailed analysis of the distribution of BPF noise sources on the stator surface reveals that the BPF noise sources are primarily concentrated at the leading-edge region of the stator, originating primarily from the interactions between rotor wake and blade tip leakage vortices with stator blades, as well as unsteady separation bubbles near the pressure side of the stator leading edge.
Dongfei ZHANG , Junhui GAO . High-precision numerical simulation of fan rotor-stator interaction pure tone[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(7) : 130884 -130884 . DOI: 10.7527/S1000-6893.2024.30884
1 | 乔渭阳. 航空发动机气动声学[M]. 北京: 北京航空航天大学出版社, 2010: 141-146. |
QIAO W Y. Aeroacoustics of aero-engine[M]. Beijing: Beihang University Press, 2010: 141-146 (in Chinese). | |
2 | ENVIA E, WILSON A G, HUFF D L. Fan noise: A challenge to CAA[J]. International Journal of Computational Fluid Dynamics, 2004, 18(6): 471-480. |
3 | POLACSEK C, BURGUBURU S, REDONNET S, et al. Numerical simulations of fan interaction noise using a hybrid approach[J]. AIAA Journal, 2006, 44(6): 1188-1196. |
4 | RARATA Z, GABARD G, SUGIMOTO R, et al. Integrating CFD source predictions with time-domain CAA for intake fan noise prediction: AIAA-2014-2456[R]. Reston: AIAA, 2014. |
5 | 王良锋. 风扇管道声模态识别的实验及数值模拟研究[D]. 西安: 西北工业大学, 2017. |
WANG L F. Experimental and numerical simulation study on acoustic modal identification of fan duct[D]. Xi’an: Northwestern Polytechnical University, 2017 (in Chinese). | |
6 | SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649. |
7 | HE L, NING W. Efficient approach for analysis of unsteady viscous flows in turbomachines[J]. AIAA Journal, 1998, 36(11): 2005-2012. |
8 | FERRANTE P, DI FRANCESCANTONIO P, HOFFER P A, et al. Integrated “CFD-acoustic” computational approach to the simulation of aircraft fan noise[C]∥Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. New York: ASME, 2014. |
9 | MANN A, PEROT F, KIM M S, et al. Advanced noise control fan direct aeroacoustics predictions using a lattice-Boltzmann method: AIAA-2012-2287?[R]. Reston: AIAA, 2012. |
10 | DAROUKH M, LE GARREC T, POLACSEK C. Low-speed turbofan aerodynamic and acoustic prediction with an isothermal lattice Boltzmann method[J]. AIAA Journal, 2022, 60(2): 1152-1170. |
11 | SANTOS FERNANDES L, HOUSMAN J A, KENWAY G K, et al. Fan noise predictions of the NASA source diagnostic test using unsteady simulations with LAVA Part I: Near-field aerodynamics and turbulence: AIAA-2024-3228[R]. Reston: AIAA, 2023. |
12 | TAM C K W, WEBB J C. Dispersion-relation-preserving finite difference schemes for computational acoustics[J]. Journal of Computational Physics, 1993, 107(2): 262-281. |
13 | SUN Y Z, WANG Z J, LIU Y. High-order multidomain spectral difference method for the Navier-Stokes equations: AIAA-2006-0301[R]. Reston: AIAA, 2006. |
14 | GAO J H. A sliding-mesh interface method for three dimensional high order spectral difference solver[J]. Journal of Computational Physics, 2022, 454: 110988. |
15 | STANESCU D, HABASHI W G. 2N-storage low dissipation and dispersion Runge-Kutta schemes for computational acoustics[J]. Journal of Computational Physics, 1998, 143(2): 674-681. |
16 | ZHANG D F, GAO J H. GPU implementation and optimization of a high-order spectral difference method for aeroacoustic problems?[J]. Journal of Aerospace Engineering, 2024, 37(3): 04024025. |
17 | SUTLIFF D L. A 20 year retrospective of the advanced noise control fan-contributions to turbofan noise research: GRC-E-DAA-TN71900[R]. Reston: AIAA, 2019. |
18 | HU F. On the construction of PML absorbing boundary condition for the non-linear Euler equations: AIAA-2006-0798[R]. Reston: AIAA, 2006. |
19 | 张东飞, 高军辉. GPU加速高阶谱差分方法在风扇噪声中的应用[J]. 航空学报, 2024, 45(8): 128941. |
ZHANG D F, GAO J H. Application of GPU-accelerated high-order spectral difference method in fan noise?[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 128941 (in Chinese). | |
20 | MALDONADO A L P, BOBENRIETH MISERDA R F, PIMENTA B G. Computational tonal noise prediction for the advanced noise control fan: AIAA-2012-2128[R]. Reston: AIAA, 2012. |
21 | MCALLISTER J, LOEW R A, LAUER J T, et al. The advanced noise control fan baseline measurements: AIAA-2009-0624[R]. Reston: AIAA, 2009. |
/
〈 |
|
〉 |