The rotor-stator interaction pure tone is a major component of fan noise. A deep understanding of its generation mecha-nism, high-precision simulation and prediction are topics of mutual concern in both academia and industry. This paper employs high-order spectral difference methods to conduct high-precision numerical simulations of fan rotor-stator inter-action pure tone. Compared with experimental results, the numerical simulations accurately predict the main mode com-ponents of the rotor-stator interaction pure tone. The sound power level (PWL) errors for the first three blade passing fre-quency (BPF) dominant modes are -1.2 dB, +0.8 dB, and -2.1 dB, respectively. Among all the “CUT-ON” modes within the first three BPFs, the proportion of modes with a PWL error below 5 dB is 86%, 35%, and 30%, respectively. Detailed analysis of the distribution of BPF noise sources on the stator surface reveals that the BPF noise sources are primarily concentrated at the leading-edge region of the stator, originating primarily from the interactions between rotor wake and blade tip leakage vortices with stator blades, as well as unsteady separation bubbles near the pressure side of the stator leading edge.
ZHANG Dong-Fei
,
GAO Jun-Hui
. High-precision numerical simulation of fan rotor-stator interaction pure tone[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 0
: 0
-0
.
DOI: 10.7527/S1000-6893.2024.30884
[1] ENVIA E, WILSON A G, HUFF D L. Fan noise: a challenge to CAA[J]. International Journal of Compu-tational Fluid Dynamics, 2004(6): 18.
[2] POLACSEK C, BURGUBURU S, REDONNET S, et al. Numerical simulations of fan interaction noise us-ing a hybrid approach[J]. AIAA Journal, 2006, 44(6):1188-1196.
[3] RARATA Z, GABARD G, SUGIMOTO R, et al. Inte-grating CFD source predictions with time-domain CAA for intake fan noise prediction[C]// 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, AIAA paper 2014-2456, 2014.
[4] 王良锋. 风扇管道声模态识别的实验及数值模拟研究[D]. 西安: 西北工业大学, 2017.
WANG L F. Experimental and numerical study on duct mode identification of fan noise[D]. Xian, Northwestern polytechnical university, 2017.
[5] HE L, NING W. Efficient approach for analysis of unsteady viscous flows in turbomachines[J]. AIAA Journal, 1998, 36(11): 2005–2012.
[6] FERRANTE P, FRANCESCANTONIO P D, HOFFER P A, et al. Integrated "CFD - acoustic" computational approach to the simulation of aircraft fan noise[J]. Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 2A: Turbomachinery, 2014.
[7] MANN A, PEROT F, KIM M S. Advanced noise con-trol fan direct aeroacoustics predictions using a Lat-tice-Boltzmann method[C]// 18th AIAA/CEAS Aeroa-coustics Conference, Colorado Springs, CO, AIAA paper 2012-2287, 2012.
[8] DAROUKH M, GARREC T L, POLACSEK C. Low-speed turbofan aerodynamic and acoustic prediction with an isothermal Lattice Boltzmann method[J]. AIAA Journal, 2022, 60(2): 1152-1170.
[9] FERNANDES L S, HOUSMAN J A, KENWAY G K, et al. Fan noise predictions of the NASA source diag-nostic test using unsteady simulations with LAVA part I: near-field aerodynamics and turbulence[C]// AIAA SCITECH 2023 Forum, National Harbor, MD, AIAA paper 2023-0793, 2023.
[10] TAM C K W, WEBB J C. Dispersion-relation-preserving finite difference schemes for computa-tional acoustics[J]. Journal of Computational Physics, 1993, 107: 262–281.
[11] SUN Y Z, WANG Z J, LIU Y, High-order multidomain spectral difference method for the Navier-Stokes equations on unstructured hexahedral grids[J]. Com-munications in Computational Physics, 2007, 2(2): 310-333.
[12] GAO J H. A sliding-mesh interface method for three dimensional high order spectral difference solver[J]. Journal of Computational Physics, 2022, 454: 110988.
[13] STANESCU D, HABASHI W G. 2N-Storage low dis-sipation and dispersion Runge-Kutta schemes for computational acoustics[J]. Journal of Computational Physics, 1998, 143: 674-681.
[14] ZHANG D F, GAO J H. GPU implementation and optimization of a high-order spectral difference method for aeroacoustic problems[J]. Journal of Aer-ospace Engineering, 2024, 37(3): 04024025.
[15] SUTLIFF D L. A 20 year retrospective of the ad-vanced noise control fan – contributions to turbo-fan noise research[C]// AIAA Propulsion and Energy 2019 Forum. 2019.
[16] HU F Q. On the construction of PML absorbing boundary condition for the non-linear Euler equa-tions[C]// 44th AIAA Aerospace Sciences Meeting and Exhibit. 2006.
[17] 张东飞, 高军辉. GPU加速高阶谱差分方法在风扇噪声中的应用[J]. 航空学报, 2024, 45(08): 123-137.
ZHANG D F, GAO J H. Application of GPU?accelerated high?order spectral difference meth-od in fan noise[J]. Acta Aeronauticaet Astronautica Sinica, 2024, 45(08): 123-137.
[18] MALDONADO A L, BOBENRIETH MISERDA R F, PIMENTA B G. Computational tonal noise prediction for the advanced noise control fan[C]// 18th AIAA/CEAS Aeroacoustics Conference, Colorado Springs, CO, AIAA paper 2012-2128, 2012.
[19] MCALLOSTER J, LOEW R A, LAUER J T, et al. The advanced noise control fan baseline measurements[C]. 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Or-lando, Florida, AIAA paper 2009-624, 2009.