ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Low-altitude airspace planning: A review and prospect
Received date: 2024-06-28
Revised date: 2024-07-29
Accepted date: 2024-10-18
Online published: 2024-10-29
Supported by
National Natural Science Foundation of China(52272333);Postgraduate Research & Practice Innovation Program of NUAA(xcxjh20230719)
With the rapid development of China’s low-altitude economy and the planning requirements outlined in the “14th Five-Year Plan”, low-altitude transportation is expected to become a significant mode of transport. However, the current low-altitude airspace remains largely undeveloped and not fully open in China. As a result, related studies on airspace and trajectory planning are still in their early stages, and are difficult to meet the surging demand for low-altitude operations. Therefore, it is essential to establish a robust and comprehensive theoretical framework for airspace and trajectory planning according to the unique characteristics of low-altitude environments. This paper firstly examines the fundamental characteristics of low-altitude airspace and systematically reviews the research on the limiting factors of low-altitude airspace planning, airspace designation, and trajectory planning both domestically and internationally. Existing findings and gaps in current research are discussed, and common challenges in the field are also highlighted. Next, the feasibility of employing block or tube airspace designation methods is assessed in the context of China’s current low-altitude development. A developmental trajectory that evolves from individual trajectories to trajectory clusters and ultimately to trajectory networks is proposed, emphasizing the need for accelerated technological integration to innovate airspace infrastructure. Finally, this paper outlines three key elements that should be prioritized for future low-altitude airspace and trajectory planning: first, incorporating environmental and social factors as central elements in airspace planning; second, exploring phased airspace designation, composite designation strategies, and specialized planning methods; third, designing generalized fast algorithms for trajectory planning to accommodate diverse operational scenarios.
Juntong WANG , Danwen BAO , Jiayi ZHOU , Jingxuan SHANG , Ziqian ZHANG . Low-altitude airspace planning: A review and prospect[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(11) : 530879 -530879 . DOI: 10.7527/S1000-6893.2024.30879
[1] | QIU S D, YAO D K, WANG Z K. Analysis of low-altitude airspace?[J]. Journal of Physics: Conference Series, 2019, 1302(4): 042032. |
[2] | ADMINISTRATION F A. Unmanned aircraft system (UAS) traffic management concept of operations V2.0[EB/OL]. (2022-08-16)[2024-03-08]. . |
[3] | SESAR. U-space blueprint[EB/OL]. (2017-10-30) [2024-03-08]. . |
[4] | SESAR. European ATM master plan[EB/OL]. (2019-12-17)[2024-03-08]. . |
[5] | 中央空中交通管理委员会. 低空空域使用管理规定(试行)征求意见稿[EB/OL]. (2014-07-23)[2024-03-08]. . |
Central Air Traffic Control Board. Draft for soliciting comments on provisions on the administration of the use of low-altitude airspace (for trial implementation)[EB/OL]. (2014-07-23)[2024-03-08]. (in Chinese). | |
[6] | 中华人民共和国国务院办公厅. 关于促进通用航空业发展的指导意见[EB/OL]. (2016-05-13)[2024-03-0.. |
General Office of the State Council, People’s Republic of China. Guiding opinions on promoting the development of general aviation industry[EB/OL]. (2016-05-13)[2024-03-08]. (in Chinese). | |
[7] | BAUM M S. Unmanned aircraft systems traffic management: UTM[M]. Boca Raton: CRC Press, 2021: 84-95. |
[8] | QU W Q, XU C C, TAN X, et al. Preliminary concept of urban air mobility traffic rules[J]. Drones, 2023, 7(1): 54. |
[9] | 全权, 李刚, 柏艺琴, 等. 低空无人机交通管理概览与建议[J]. 航空学报, 2020, 41(1): 023238. |
QUAN Q, LI G, BAI Y Q, et al. Low altitude UAV traffic management: An introductory overview and proposal?[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 023238 (in Chinese). | |
[10] | 李诚龙, 屈文秋, 李彦冬, 等. 面向eVTOL航空器的城市空中运输交通管理综述[J]. 交通运输工程学报, 2020, 20(4): 35-54. |
LI C L, QU W Q, LI Y D, et al. Overview of traffic management of urban air mobility (UAM) with eVTOL aircraft[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 35-54 (in Chinese). | |
[11] | BAURANOV A, RAKAS J. Designing airspace for urban air mobility: A review of concepts and approaches[J]. Progress in Aerospace Sciences, 2021, 125: 100726. |
[12] | COLE K. Reactive trajectory generation and formation control for groups of UAVs in windy environments[D]. Washington, D.C.: The George Washington University, 2018. |
[13] | TANG C K, WANG Y Y, ZHANG L L, et al. GNSS/inertial navigation/wireless station fusion UAV 3-D positioning algorithm with urban canyon environment?[J]. IEEE Sensors Journal, 2022, 22(19): 18771-18779. |
[14] | CHRISTIAN A W, CABELL R. Initial investigation into the psychoacoustic properties of small unmanned aerial system noise[C]?∥23rd AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2017. |
[15] | 管淑君. 基于相角控制的多旋翼噪声抑制技术研究[D]. 南京: 南京航空航天大学, 2021. |
GUAN S J. Research on multi-rotor noise suppression technology based on phase angle control[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese). | |
[16] | SCH?FFER B, PIEREN R, HEUTSCHI K, et al. Drone noise emission characteristics and noise effects on humans-a systematic review[J]. International Journal of Environmental Research and Public Health, 2021, 18(11): 5940. |
[17] | TORIJA A J, CLARK C. A psychoacoustic approach to building knowledge about human response to noise of unmanned aerial vehicles[J]. International Journal of Environmental Research and Public Health, 2021, 18(2): 682. |
[18] | WAKIL K, NAEEM M A, ANJUM G A, et al. A hybrid tool for visual pollution assessment in urban environments[J]. Sustainability, 2019, 11(8): 2211. |
[19] | AIRBUS. An assessment of public perception of Urban Air Mobility (UAM)[EB/OL]. (2023-06-26)[2024-03-08]. . |
[20] | EASA. Study on the societal acceptance of Urban Air Mobility in Europe[EB/OL]. (2021-05-19)[2024-03-08]. . |
[21] | CLOTHIER R A, GREER D A, GREER D G, et al. Risk perception and the public acceptance of drones[J]. Risk Analysis, 2015, 35(6): 1167-1183. |
[22] | CHANG V, CHUNDURY P, CHETTY M, et al. Spiders in the sky[C]?∥Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. New York: ACM, 2017: 6765-6776. |
[23] | LIDYNIA C, PHILIPSEN R, ZIEFLE M. Droning on about drones: Acceptance of and perceived barriers to drones in civil usage contexts[M]?∥Advances in human factors in robots and unmanned systems. Cham: Springer International Publishing, 2016: 317-329. |
[24] | SESAR. UAM use cases and scenarios (AMU-LED D 3.1)[EB/OL]. (2021-07-02)[2024-03-08]. . |
[25] | VASCIK P D, BALAKRISHNAN H, HANSMAN R J. Assessment of air traffic control for urban air mobility and unmanned systems[EB/OL]. (2018-09-10)[2024-03-08]. . |
[26] | SCHUCHARDT BIANCA I, DAGI G, THOMAS L, et al. Air traffic management as a vital part of urban air mobility: A review of DLR’s research work from 1995 to 2022[J]. Aerospace, 2023, 10(1): 81. |
[27] | SESAR. Operational safety analysis and concept (AMU-LED D 2.1)[EB/OL]. (2021-07-02)[2024-03-08]. . |
[28] | 张洪海, 李姗, 夷珈, 等. 城市低空航路规划研究综述[J]. 南京航空航天大学学报, 2021, 53(6): 827-838. |
ZHANG H H, LI S, YI J, et al. Review on urban low-altitude air route planning[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(6): 827-838 (in Chinese). | |
[29] | ZENG Y, LYU J B, ZHANG R. Cellular-connected UAV: Potential, challenges, and promising technologies[J]. IEEE Wireless Communications, 2019, 26(1): 120-127. |
[30] | 程琦. 城市环境GNSS定位导航关键技术研究[D]. 南京: 南京航空航天大学, 2021: 14-16. |
CHENG Q. Research on key technologies of GNSS positioning and navigation in urban environment[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 14-16 (in Chinese). | |
[31] | NIU Z, NIE P, TAO L, et al. RTK with the assistance of an IMU-based pedestrian navigation algorithm for smartphones[J]. Sensors, 2019, 19(14): 3228. |
[32] | 陈晓, 毛烨炳. ADS-B技术在低空空域安全中应用的现状与展望[J]. 电子测量技术, 2022, 45(20): 61-67. |
CHEN X, MAO Y B. Status and prospect of ADS-B technology application in low-altitude airspace security[J]. Electronic Measurement Technology, 2022, 45(20): 61-67 (in Chinese). | |
[33] | EASA. Prototype technical specifications for the design of VFR vertiports for operation with manned VTOL-capable aircraft certified in the enhanced category (PTS-VPT-DSN)[EB/OL]. (2022-03-24)[2024-03-08]. . |
[34] | YU Y, WANG M Y, MESBAHI M, et al. Vertiport selection in hybrid air-ground transportation networks via mathematical programs with equilibrium constraints[J]. IEEE Transactions on Control of Network Systems, 2023, 10(4): 2108-2119. |
[35] | ZHANG H H, WANG F, FENG D K, et al. A logistics UAV parcel-receiving station and public air-route planning method based on bi-layer optimization[J]. Applied Sciences, 2023, 13(3): 1842. |
[36] | REN X H, LI R B. The location problem of medical drone vertiports for emergency cardiac arrest needs[J]. Sustainability, 2024, 16(1): 44. |
[37] | WU Z Q, ZHANG Y. Integrated network design and demand forecast for on-demand urban air mobility[J]. Engineering, 2021, 7(4): 473-487. |
[38] | 钱欣悦, 张洪海, 张芳, 等. 末端配送物流无人机起降点选址分配问题研究[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(4): 682-687, 693. |
QIAN X Y, ZHANG H H, ZHANG F, et al. Research on location allocation of UAV landing points for terminal distribution logistics[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2021, 45(4): 682-687, 693 (in Chinese). | |
[39] | SUNIL E, HOEKSTRA J, ELLERBROEK J, et al. Metropolis: Relating airspace structure and capacity for extreme traffic densities[C]?∥11th USA/EUROPE Air Traffic Management R & D Seminar (ATM2015), 2015: 1-10. |
[40] | METROPOLIS. Metropolis WP1 work plan[EB/OL]. (2014-03-05)[2024-03-08]. . |
[41] | METROPOLIS. METROPOLIS concept design report[EB/OL]. (2014-10-03)[2024-03-08]. . |
[42] | QUAN Q, FU R, LI M X, et al. Practical distributed control for VTOL UAVs to pass a virtual tube[J]. IEEE Transactions on Intelligent Vehicles, 2022, 7(2): 342-353. |
[43] | QUAN Q, GAO Y, BAI C G. Distributed control for a robotic swarm to pass through a curve virtual tube[J]. Robotics and Autonomous Systems, 2023, 162: 104368. |
[44] | NASA. Corridor design and analysis for UAM op-erations[EB/OL]. (2022-01-29)[2024-03-08]. . |
[45] | JANG D S, IPPOLITO C A, SANKARARAMAN S, et al. Concepts of airspace structures and system analysis for UAS traffic flows for urban areas[C]?∥AIAA Information Systems-AIAA Infotech @ Aerospace. Reston: AIAA, 2017. |
[46] | AIRBUS. Blue print for the sky: The road map for the safe integration of autonomous aircraft[EB/OL]. (2018-09-05)[2024-03-08]. . |
[47] | EMBRAERX. Flight plan 2030: An air traffic man-agement concept for urban air mobility[EB/OL]. (2019-05-28)[2024-03-08]. . |
[48] | MUNA S I, MUKHERJEE S, NAMUDURI K, et al. Air corridors: concept, design, simulation, and rules of engagement[J]. Sensors, 2021, 21(22): 7536. |
[49] | ADMINISTRATION F A. Unmanned aircraft syste-m (UAS) traffic management concept of operation-s V1.0[EB/OL]. (2018-06-05) [2024-03-08]. . |
[50] | UAM T K. K-UAM concept of operations 1.0[EB/OL]. (2021-09-29)[2024-03-08]. . |
[51] | VERMA S, DULCHINOS V, WOOD R D, et al. Design and analysis of corridors for UAM operations[C]?∥2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC). Reston: AIAA, 2022. |
[52] | LASCARA B, LACHER A, DEGARM O M, et al. Urban air mobility airspace integration concepts?[EB/OL](2019-06-10)[2024-03-08]. . |
[53] | MCCARTHY T, PFORTE L, BURKE R. Fundamental elements of an urban UTM[J]. Aerospace, 2020, 7(7): 85. |
[54] | AMAZON. Revising the airspace model for the safe integration of sUAS[EB/OL]. (2015-11-28)[2024-03-08]. . |
[55] | DACUS. Structures and rules in capacity constrai-ned (urban) environments (D 5.1)[EB/OL]. (2021-05-27)[2024-03-08]. . |
[56] | DLR. DLR blueprint[EB/OL]. (2017-12-15)[2024-03-08]. . |
[57] | QUAN Q, FU R, CAI K Y. How far two UAVs should be subject to communication uncertainties?[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(1): 429-445. |
[58] | CORUS. U-space concept of operations vol1[EB/OL]. (2019-11-08)[2024-03-08]. . |
[59] | HOEKSTRA J M, RUIGROK R C J, GENT V. Free flight in a crowded airspace?[M]. Reston: AIAA, 2001. |
[60] | HOEKSTRA J M, VAN GENT R N H W, RUIGROK R C J. Designing for safety: The ‘free flight’ air traffic management concept[J]. Reliability Engineering & System Safety, 2002, 75(2): 215-232. |
[61] | 张洪海, 邹依原, 张启钱, 等. 未来城市空中交通管理研究综述[J]. 航空学报, 2021, 42(7): 024638. |
ZHANG H H, ZOU Y Y, ZHANG Q Q, et al. Future urban air mobility management: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 024638 (in Chinese). | |
[62] | JARDIN M R. Analytical relationships between conflict counts and air-traffic density?[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(6): 1150-1156. |
[63] | QUAN Q, LI M X, FU R. Sky highway design for dense traffic?[J]. IFAC-PapersOnLine, 2021, 54(2): 140-145. |
[64] | VáSáRHELYI G, VIRáGH C, SOMORJAI G, et al. Optimized flocking of autonomous drones in confined environments?[J]. Science Robotics, 2018, 3(20): eaat3536. |
[65] | AGGARWAL S, KUMAR N. Path planning techniques for unmanned aerial vehicles: Review, solutions, and challenges?[J]. Computer Communications, 2020, 149: 270-299. |
[66] | LIU J Y, GUO Z Q, LIU S Y. The simulation of the UAV collision avoidance based on the artificial potential field method?[J]. Advanced Materials Research, 2012, 591-593: 1400-1404. |
[67] | SUN J Y, TANG J, LAO S Y. Collision avoidance for cooperative UAVs with optimized artificial potential field algorithm[J]. IEEE Access, 2017, 5: 18382-18390. |
[68] | 王庆禄, 吴冯国, 郑成辰, 等. 基于优化人工势场法的无人机航迹规划[J]. 系统工程与电子技术, 2023, 45(5): 1461-1468. |
WANG Q L, WU F G, ZHENG C C, et al. UAV path planning based on optimized artificial potential field method[J]. Systems Engineering and Electronics, 2023, 45(5): 1461-1468 (in Chinese). | |
[69] | ZHANG N, ZHANG M C, LOW K H. 3D path planning and real-time collision resolution of multirotor drone operations in complex urban low-altitude airspace?[J]. Transportation Research Part C: Emerging Technologies, 2021, 129: 103123. |
[70] | LUO Y, LU J K, ZHANG Y, et al. 3D JPS path optimization algorithm and dynamic-obstacle avoidance design based on near-ground search drone?[J]. Applied Sciences, 2022, 12(14): 7333. |
[71] | 张洪海, 张连东, 刘皞, 等. 城市低空物流无人机航迹规划模型研究[J]. 交通运输系统工程与信息, 2022, 22(1): 256-264. |
ZHANG H H, ZHANG L D, LIU H, et al. Track planning model for logistics unmanned aerial vehicle in urban low-altitude airspace[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 256-264 (in Chinese). | |
[72] | BERTRAM J, WEI P. Distributed computational guidance for high-density urban air mobility with cooperative and non-cooperative collision avoidance[C]?∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
[73] | FU S Y, HAN L W, TIAN Y, et al. Path planning for unmanned aerial vehicle based on genetic algorithm[C]?∥2012 IEEE 11th International Conference on Cognitive Informatics and Cognitive Computing. Piscataway: IEEE Press, 2012: 140-144. |
[74] | CUI Z Y, WANG Y. UAV path planning based on multi-layer reinforcement learning technique[J]. IEEE Access, 2021, 9: 59486-59497. |
[75] | YU J, GUO J, ZHANG X, et al. UAV path planning in dynamical environment: A novel ICACO-IDWA algorithm[J]. Mathematical Problems in Engineering, 2022, 2022: 1-16. |
[76] | 吕超, 李慕宸, 欧家骏. 基于分层深度强化学习的无人机混合路径规划[J/OL]. 北京航空航天大学学报, 2023: 1-13. (2023-11-01). . |
LYU C, LI M C, OU J J. Hybrid path planning of UAV based on hierarchical depth reinforcement learning[J/OL]. China Industrial Economics, 2023: 1-13. (2023-11-01). (in Chinese). | |
[77] | YANG Q M, ZHANG J D, SHI G Q. Path planning for unmanned aerial vehicle passive detection under the framework of partially observable Markov decision process[C]?∥2018 Chinese Control and Decision Conference (CCDC). Piscataway: IEEE Press, 2018: 3896-3903. |
[78] | 王瑶, 任安虎, 任洋洋. 改进蚁群算法的无人机航迹规划[J]. 电光与控制, 2024, 31(4): 43-48. |
WANG Y, REN A H, REN Y Y. An improved ant colony algorithm for UAV trajectory planning[J]. Electronics Optics & Control, 2024, 31(4): 43-48 (in Chinese). | |
[79] | 黄鹤, 高永博, 茹锋, 等. 基于自适应黏菌算法优化的无人机三维路径规划[J]. 上海交通大学学报, 2023, 57(10): 1282-1291. |
HUANG H, GAO Y B, RU F, et al. 3D path planning of UAV based on adaptive slime mould algorithm optimization[J]. Journal of Shanghai Jiao Tong University, 2023, 57(10): 1282-1291 (in Chinese). | |
[80] | 王康, 司鹏, 陈莉, 等. 基于改进沙猫群算法的无人机三维航迹规划[J]. 兵工学报, 2023, 44(11): 3382-3393. |
WANG K, SI P, CHEN L, et al. 3D path planning of unmanned aerial vehicle based on enhanced sand cat swarm optimization algorithm[J]. Acta Armamentarii, 2023, 44(11): 3382-3393 (in Chinese). | |
[81] | TU G T, JUANG J G. UAV path planning and obstacle avoidance based on reinforcement learning in 3D environments[J]. Actuators, 2023, 12(2): 57. |
[82] | 解瑞云, 海本斋. 多策略鼠群优化算法的无人机三维航迹规划[J]. 机械设计与制造, 2024(9): 112-119. |
XIE R Y, HAI B Z. Multi-strategy rat swarm optimizer for unmanned aerial vehicle 3D flight path planning[J]. Machinery Design & Manufacture, 2024(9): 112-119 (in Chinese). | |
[83] | 雷耀麟, 丁文锐, 罗祎喆, 等. 无人机数据采集任务中的航迹与资源优化[J/OL]. 北京航空航天大学学报,1-14[2024-03-08]. . |
LEI Y L, DING W R, LUO Y Z, et al. Trajectory planning and resource allocation methods in UAV data collection missions [J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 1-14[2024-03-08]. (in Chinese). | |
[84] | SAFADI Y, FU R, QUAN Q, et al. Macroscopic fundamental diagrams for low-altitude air city transport?[J]. Transportation Research Part C: Emerging Technologies, 2023, 152: 104141. |
/
〈 |
|
〉 |