special column

Sensitivity analysis on key parameters of hybrid hydrogen fuel cell commercial aircraft

  • Zhouwei FAN ,
  • Chuihuan KONG ,
  • Ming LIU ,
  • Zhaoguang TAN
Expand
  • Shanghai Aircraft Design and Research Institute,Commercial Aircraft Corporation of China Ltd. ,Shanghai 201210,China

Received date: 2024-08-16

  Revised date: 2024-09-29

  Accepted date: 2024-10-09

  Online published: 2024-10-23

Supported by

Shanghai Post-Doctoral Excellence Program

Abstract

Hybrid hydrogen fuel cell aircraft is one of the feasible technological routes to reduce carbon emissions in the aviation industry. However, there is a lack of mechanism analysis and quantitative trend research on the impact of different hybrid hydrogen fuel cell technologies on the overall characteristics of aircraft. A sensitivity analysis method for key parameters of hybrid hydrogen fuel cell commercial aircraft is established to study the mechanism and impact trend of key technical parameters on the overall characteristics of the aircraft. Optimal power allocation strategies matching different technological development stages from current to future 10-year are proposed based on projected hydrogen energy developments. Focusing on narrow-body commercial aircraft, sensitivity analysis on key parameters are conducted. The results show that the power density of the hydrogen fuel cell has the greatest impact on the maximum takeoff weight and operating empty weight of the aircraft, while the thrust proportion by hydrogen fuel cell during cruising has the greatest impact on the carbon emissions of the aircraft, as well as the fuel and carbon tax costs. At different technical levels, improving the thrust proportion by hydrogen fuel cell during cruising can generally reduce the maximum takeoff weight and fuel and carbon tax costs of the aircraft, though excessive hydrogen power allocation during takeoff should be avoided. Under anticipated hybrid technology development trajectories, the aircraft can obtain the lightest maximum takeoff weight and the lowest fuel and carbon tax costs when the thrust proportion by hydrogen fuel cell during cruising is 0.4 and the thrust proportion by hydrogen fuel cell during takeoff is 0.15. Compared with the traditional aircraft, the hybrid hydrogen fuel cell commercial aircraft can reduce fuel and carbon tax costs by 15%–26% in the next decade.

Cite this article

Zhouwei FAN , Chuihuan KONG , Ming LIU , Zhaoguang TAN . Sensitivity analysis on key parameters of hybrid hydrogen fuel cell commercial aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(9) : 631066 -631066 . DOI: 10.7527/S1000-6893.2024.31066

References

1 GRAVER B, RUTHERFORD D, ZHENG S. CO2 emissions from commercial aviation: 2013, 2018, and 2019[R]. Washington, D.C.: International Council on Clean Transportation, 2020.
2 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报201637(1): 57-68.
  HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica201637(1): 57-68 (in Chinese).
3 McKinsey & Company. Hydrogen powered aviation: A fact-based study of hydrogen technology, economics, and climate impact by 2050[R]. Luxembourg: Publications Office of the European Union, 2020.
4 雷涛, 闵志豪, 付红杰, 等. 燃料电池无人机混合电源动态平衡能量管理策略[J]. 航空学报202041(12): 324048.
  LEI T, MIN Z H, FU H J, et al. Dynamic balanced energy management strategies for fuel-cell hybrid power system of unmanned air vehicle[J]. Acta Aeronautica et Astronautica Sinica202041(12): 324048 (in Chinese).
5 BRADLEY M K, DRONEY C K. Subsonic ultra green aircraft research phaseⅡ: N+4 advanced concept development: NASA/CR-2012-217556[R]. Washington, D.C.: NASA, 2012.
6 STüRKEN J, MEINBERG L, BAHM S, et al. Concept for a hydrogen-powered aircraft for 150 passengers with EIS 2035[C]∥Deutscher Luft-und Raumfahrtkongress. 2021.
7 ADLER E J, MARTINS J R R A. Hydrogen-powered aircraft: Fundamental concepts, key technologies, and environmental impacts[J]. Progress in Aerospace Sciences2023141: 100922.
8 纪宇晗, 吴佳茜, 曾凡苍. 氢燃料电池支线飞机关键技术与发展展望[J]. 航空科学技术202435(1): 15-24.
  JI Y H, WU J X, ZENG F C. Key technologies and development outlook of hydrogen fuel cell regional aircraft[J]. Aeronautical Science & Technology202435(1): 15-24 (in Chinese).
9 张扬军, 彭杰, 钱煜平, 等. 氢能航空的关键技术与挑战[J]. 航空动力2021(1): 20-23.
  ZHANG Y J, PENG J, QIAN Y P, et al. Key technologies and challenges of hydrogen powered aviation[J]. Aerospace Power2021(1): 20-23 (in Chinese).
10 宋薇薇, 杨凤田, 项松, 等. 氢能飞机研制进展及产业化前景分析[J]. 中国工程科学202325(5): 192-201.
  SONG W W, YANG F T, XIANG S, et al. Development progress and industrialization prospect of hydrogen-powered aircraft[J]. Strategic Study of CAE202325(5): 192-201 (in Chinese).
11 JANOVEC M, BAB?AN V, KANDERA B, et al. Performance and weight parameters calculation for hydrogen and battery-powered aircraft concepts[J]. Aerospace202310(5): 10050482.
12 VONHOFF G L M. Conceptual design of hydrogen fuel cell aircraft[D]. Delft: Delft University of Technology, 2021.
13 纪宇晗, 曾凡苍, 王翔宇, 等. 氢燃料电池支线飞机概念设计与性能分析[J]. 航空学报202546(9): 630613.
  JI Y H, ZENG F C, WANG X Y, et al. Concept design and performance analysis of hydrogen fuel cell regional aircraft[J]. Acta Aeronautica et Astronautica Sinica202546(9): 630613.
14 FAROKHI S. Aircraft propulsion[M]. 2nd ed. New York: John Wiley & Sons, Inc., 2014.
15 HOWE D. Aircraft conceptual design synthesis[M]. New York: John Wiley & Sons, Inc., 2000.
16 GUDMUNDSSON S. General aviation aircraft design: Applied methods and procedures[M]. Oxford: Butterworth-Heinemann, 2014.
17 ROSKAM J. Airplane design Part Ⅰ: Preliminary sizing of airplanes[M]. Lawrence: DARcorporation, 2015.
18 TORENBEEK E. Advanced aircraft design: Conceptual design, analysis, and optimization of subsonic civil airplanes[M]. New York: John Wiley & Sons, Inc., 2013.
19 LOFTIN L K. Subsonic aircraft: Evolution and the matching of size to performance: NASA-RP-1060[R]. Washington, D.C.: NASA, 1980.
20 VERSTRAETE D, HENDRICK P, PILIDIS P, et al. Hydrogen fuel tanks for subsonic transport aircraft[J]. International Journal of Hydrogen Energy201035(20): 11085-11098.
21 张帅. 客机总体综合分析与优化及其在技术评估中的应用[D]. 南京: 南京航空航天大学, 2012.
  ZHANG S. Integrated analysis and optimization in conceptual design of airliners with applications to technology assessment[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese).
22 SFORZA P M. Commercial airplane design principles[M]. Oxford: Butterworth-Heinemann, 2014.
23 MARKSEL M, PRAPOTNIK BRDNIK A. Maximum take-off mass estimation of a 19-seat fuel cell aircraft consuming liquid hydrogen[J]. Sustainability202214(14): 8392.
24 LENSSEN R H. Series hybrid electric aircraft: Comparing the well-to-propeller efficiency with a conventional propeller aircraft[D]. Delft: Delft University of Technology, 2016.
25 BIJEWITZ J R. Conceptual sizing methods for pro-pulsive fuselage aircraft concepts[D]. München: Technischen Universit?t München, 2019.
26 中国民用航空局. 中国民用航空规章 第25部:运输类飞机适航标准: CCAR-25-R4 [S]. 2011.
  Civil Aviation Administration of China. Civil aviation regulations of China Part 25: Airworthiness standards for transport aircraft: CCAR-25-R4 [S]. 2011 (in Chinese).
27 刘虎, 罗明强, 孙康文, 等. 飞机总体设计[M]. 北京: 北京航空航天大学出版社, 2019.
  LIU H, LUO M Q, SUN K W, et al. Aircraft conceptual design[M]. Beijing: Beihang University Press, 2019 (in Chinese).
28 International Civil Aviation Organization. ICAO carbon emissions calculator methodology[R]. 2018.
29 LEE M, LI L K B, SONG W B. Analysis of direct operating cost of wide-body passenger aircraft: A parametric study based on Hong Kong[J]. Chinese Journal of Aeronautics201932(5): 1222-1243.
30 Steer. Analysing the costs of hydrogen aircraft[R/OL]. [2024-08-16]. .
31 达兴亚, 范召林, 熊能, 等. 分布式边界层吸入推进系统的建模与分析[J]. 航空学报201839(7): 122048.
  DA X Y, FAN Z L, XIONG N, et al. Modeling and analysis of distributed boundary layer ingesting propulsion system[J]. Acta Aeronautica et Astronautica Sinica201839(7): 122048 (in Chinese).
32 YILDIRIM A, GRAY J S, MADER C A, et al. Boundary-layer ingestion benefit for the STARC-ABL concept[J]. Journal of Aircraft202259(4): 896-911.
33 FlyZero. Fuel cells roadmap report: FZO-PPN-COM-0033[R]. London: Aerospace Technology Institute, 2022.
34 MARTINS J R R A, LAMBE A B. Multidisciplinary design optimization: A survey of architectures[J]. AIAA Journal201351(9): 2049-2075.
35 BURTON S A, KAO J Y, WHITE T L, et al. Air-racer design exploration using Latin hypercube and genetic algorithm methods: AIAA-2020-1392[R]. Reston: AIAA, 2020.
36 范周伟, 余雄庆, 王朝, 等. 基于深度神经网络的客机总体设计参数敏感性分析[J]. 航空学报202142(4): 524353.
  FAN Z W, YU X Q, WANG C, et al. Sensitivity analysis of key design parameters of commercial aircraft using deep neural network[J]. Acta Aeronautica et Astronautica Sinica202142(4): 524353 (in Chinese).
37 DAI Y L, WANG Y, XU X Y, et al. An improved method for initial sizing of airbreathing hypersonic aircraft[J]. Aerospace202310(2): 199.
Outlines

/