[1]Liu X Y, Xie X Y, Zhou D M, et al.Numerical analysis of curing residual stress and strain in NEPE propellant grain[J].Polymers, 2023, 15:1019-
[2]洪东, 鲍福廷, 郭颜红, 等.固化降温工艺对固体发动机药柱温度场和结构完整性的影响[J].固体火箭技术, 2023, 46(5):755-762
[3]HONG D, BAO F T, GUO Y H, et al.Influence of cooling process during on temperature field and structur-al integrity of SRM grain[J].Journal of Solid Rocket Technology, 2023, 46(5):755-762
[4]周东谟, 谢旭源, 王瑞民, 等.推进剂固化降温过程残余应力应变分析[J].含能材料, 2024, 32(2):193-203
[5]ZHOU D M, XIE X Y, WANG R M, et al.Residual stressstrain analysis of NEPE propellant under curing and cooling[J].Chinese Journal of Energetic Materials, 2024, 32(2):193-203
[6]侯晓, 张旭, 刘向阳, 等.固体火箭发动机药柱结构完整性研究进展[J].宇航学报, 2023, 44(4):566-579
[7]HOU X, ZHANG X, LIU X Y, et al.Research progress on structural integrity of solid rocket motor grain[J].Journal of Astronautics, 2023, 44(4):566-579
[8]WANG J X, QIANG H F, WANG Z J, et al.Strength criterion of HTPB composite solid propellant under ten-sion-shear loading at low temperature [J]. Propellants Explosives Pyrotechnics, 2022, 47, e202100267.
[9]周东谟, 王辉, 惠步青, 等.基于梯度有限元法的推进剂药柱结构完整性分析[J].固体火箭技术, 2023, 46(5):695-707
[10]ZHOU D M, WANG H, HUI B Q, et al.Structural in-tegrity analysis of HTPB propellant grain based on gra-dient finite element method[J].Journal of Solid Rocket Technology, 2023, 46(5):695-707
[11]LI Y Q, LI G C, KONG L Z, et al.Experimental meas-urement and molecular dynamics simulation analysis of thermal aging performance in composite solid propellants [J]. Polymer Degradation and Stability, 2024, 225: 110812.
[12]SEBASTIAN B, HANGIL Y, WEBBE T K, et al.Cure-induced residual stress buildup and distortions of CFRP laminates with stochastic thermo-chemical and viscoelas-tic models: Experimental verifications[J].Mechanics of Advanced Materials and Structures, 2022, 29(19):2740-2756
[13]LIU X D, GUAN Z D, WANG X D, et al.Study on cure-induced residual stresses and spring-in deformation of L-shaped composite laminates using a simplified con-stitutive model considering stress relaxation[J].Compo-site Structures, 2021, 272(15):114203-
[14]DANZI F, FANTERIA D, PANETTIERI E, et al.A numerical micro-mechanical study on damage induced by the curing process in carbon/epoxy unidirectional materi-al [J]. Composite Structures, 2019, 210: 755–766.
[15]薛景, 王晓洁, 王喜占, 等.碳纤维增强树脂基复合材料固化残余应力评估方法研究现状[J].固体火箭技术, 2023, 46(2):253-262
[16]XUE J, WANG X J, WANG X Z, et al.Research status of evaluation methods for curing residual stress of car-bon fiber reinforced resin matrix composites[J].Journal of Solid Rocket Technology, 2023, 46(2):253-262
[17]BEAUMONT P W R, SOUTIS C, HODZIE A.Struc-tural integrity and durability of advanced composites [M]. Elsevier, 2015:43-72.
[18]FAVRE J P.Residual thermal stresses in fiber reinforced composite materials-A review[J].Journal of the Me-chanical Behavior of Materials, 1988, 1(4):37-53
[19]CHEN A Y, BAEHR S, TURNER A, et al.Carbon-fiber reinforced polymer composites: A comparison of manu-facturing methods on mechanical properties[J].Interna-tional Journal of Lightweight Materials and Manufacture, 2021, 4(4):468-479
[20]TWIGG G, POURSARTIP A, Fernlund G.Tool–part interaction in composites processingPart I: experimental investigation and analytical model[J].Composites Part A: Applied Science and Manufacturing, 2004, 35(1):121-133
[21]PARLEVLIET P P, BERSEE H, BEUKERS A.Residual stresses in thermoplastic composites—A study of the lit-erature—Part I: Formation of residual stresses[J].Com-posites Part A: Applied Science and Manufacturing, 2006, 37(11):1847-1857
[22]刘世俭, 王艳茹.固体火箭发动机药柱固化收缩应力分析[C]∥全国固体火箭发动机设计技术学术交流会, 中国宇航学会, 2000, 325-329.
[23]LIU S Z, WANG Y R.Analysis of curing shrinkage stress of solid rocket motor [C]∥China Solid Rocket Motor Design Technology Academic Exchange Confer-ence, Chinese Society of Astronautics, 2000, 325-329. (in Chinese)
[24]郑启龙.叠氮类粘合剂环氧固化体系及其在火药中的应用研究[D]. 南京: 南京理工大学, 2019.
[25]ZHENG Q L.Curing system of azide binders with epoxides and its application in propellants [D]. Nanjing: Nanjing University of Science and Technology, 2019. (in Chinese)
[26]王瑞民.高能固体推进剂固化过程数值模拟研究[D]. 太原: 中北大学, 2024.
[27]WANG R M.Mumerical simulation of solidification process of high energy solid propellant [D]. Taiyuan: North University of China, 2024. (in Chinese)
[28]丁安心, 李书欣, 倪爱清, 等.热固性树脂基复合材料固化变形和残余应力数值模拟研究综述[J].复合材料学报, 2017, 34(3):471-485
[29]DING A X, LI S X, NI A Q, et al.A review of numerical simulation of cure-induced distortions and residual stresses in thermoset composites[J].Acta Materiae Compositae Sinica, 2017, 34(3):471-485
[30]乔巍, 姚卫星, 马铭泽, 等.复合材料残余应力和固化变形数值模拟及本构模型评价[J].材料导报, 2019, 33(24):4193-4198
[31]QIAO W, YAO W X, MA M Z, et al.Numerical simula-tion and constitutive models evaluation of residual stresses and process-induced deformations of composite structures[J].Materials Reports, 2019, 33(24):4193-4198
[32]李晔鑫, 职世君, 王虎干, 等.低温点火条件下发动机装药结构完整性分析及验证[J].航空兵器, 2021, 28(4):82-87
[33]LI Y X, ZHI S J, WANG H G, et al.Structural integrity analysis and experiment of motor grain under low tem-perature ignition[J].Aero Weaponry, 2021, 28(4):82-87
[34]张永侠, 贾小锋, 苏昌银.固体火箭发动机装药与总装工艺学[M]. 西安: 西北工业大学出版社, 2017.
[35]ZHANG Y X, JIA X F, SU C Y.Propellant loading and final assembly technology for solid rocket motor [M]. Xi' an: Northwestern Polytechnic University Press, 2017. (in Chinese)
[36]乌岳, 李卓, 鲁荣.固体推进剂花板浇注的数值模拟与实验研究[J].火炸药学报, 2018, 41(5):506-511
[37]WU Y, LI Z, LUO R.Numerical simulation and experi-mental study of flower plate pouring system for solid propellant[J].Chinese Journal of Explosives & Propel-lants, 2018, 41(5):506-511
[38]WU Y, LI Z, LU R.Simulation and visual tester verifica-tion of solid propellant slurry vacuum plate casting[J].Propellants, Explosives, Pyrotechnics, 2020, 45(6):871-879
[39]李大方.复合固体推进剂加压插管浇注的列线图解[J]. 推进技术, 1988(5): 62-65+80.
[40]LI D F.The nomogram of pressure offset casting for composite solid propellant [J]. Journal of Propulsion Technology, 1988(5): 62-65+80. (in Chinese)
[41]朱号锋, 苏昌银, 王秀菊, 等.小型固体火箭发动机药柱连续浇注工艺技术研究[J].固体火箭技术, 2005, 2:130-132+156.
[42]ZHU H F, SU C Y, WANG X J, et al.Investigation on continuous-casting technology of propellant for small solid rocket motors [J]. Journal of Solid Rocket Tech-nology, 2005, 2:130-132+156. (in Chinese)
[43]苏昌银, 姚谦, 史旭辉, 等.固体发动机捆绑式加压成型装药工艺研究[J]. 固体火箭技术, 2006, 6: 432-434+450.
[44]SU C Y, YAO Q, SHI X H, et al.Study on strap-on pressure propellant loading process for solid rocket mo-tor [J]. Journal of Solid Rocket Technology, 2006, 6: 432-434 +450. (in Chinese)
[45]宗陆航, 杜聪, 卢山, 等.固体火箭发动机药柱加压固化仿真研究[J].固体火箭技术, 2015, 38(5):653-656
[46]ZONG L H, DU C, LU S, et al.Simulation on pressure cure of solid rocket motor grain[J].Journal of Solid Rocket Technology, 2015, 38(5):653-656
[47]CHASE C.Pioneers in propulsion-a history of CSD, Pratt Whitney' s solid rocket company [C]. Nashville:46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Exhibit, 2010.
[48]LUSHIS D V, KIRSCH T J.Space motor propulsion-A status report [R]. AIAA, 80-1271.
[49]RUSSELL A E, RALPH N H.Advanced space motor demonstration [R]. AIAA, 80-1270.
[50]JAMES S N.Solid propellant grain structural integrity analysis [R]. NASA SP-8073, 1973.
[51]HUNT D A.Computing pressure cure viscoelastic ef-fects in solid propellants[J].Journal of Spacecraft and Rockets, 1972, 9(12):937-938
[52]ARAI K J.Research on pressure cure of solid rocket motor (in Japanese)[J].Industry Powder, 1982, 43(6):360-367
[53]荒井敬司, 石秀发.固体火箭发动机加压固化的研究[J]. 固体火箭技术, 1984, 4: 54-62.
[54]HUANG J J S, SHI X F.Research on pressure curing of solid rocket motor [J]. Journal of Solid Rocket Tech-nology, 1984, 4: 54-62. (in Chinese)
[55]梁党通, 贾小锋, 胡子衍, 等.固体推进剂药柱加压固化工艺研究[C]. //2017航天先进制造技术国际研讨会论文集, 2017: 344-350.
[56]LIANG D T, JIA X F, HU Z Y, et al.Research on pres-sure curing process of solid propellant grain [C]. // Pro-ceedings of 2017 International Conference on Aerospace Advanced Manufacturing Technology, 2017: 344-350.(in Chinese)
[57]刘仔, 权恩, 褚佑彪, 等.固体火箭发动机加压固化理论及仿真研究[J].固体火箭技术, 2019, 42(5):576-596
[58]LIU Z, QUAN E, CHU Y B, et al.Theoretical and simu-lation research on pressure cure of solid rocket motor[J].Journal of Solid Rocket Technology, 2019, 42(5):576-596
[59]刘凯, 郜婕, 韩翔, 等.加压固化工艺对药柱结构完整性的影响[J].固体火箭技术, 2022, 45(4):648-652
[60]LIU K, GAO J, HAN X, et al.Influence of pressure curing on the integrity of grain structure[J].Journal of Solid Rocket Technology, 2022, 45(4):648-652
[61]仇志艳.颗粒增强铝基复合材料的组织性能及残余应力检测系统开发[D]. 上海: 上海应用技术大学, 2022.
[62]QIU Z Y.Development of microstructure, properties and residual stress detection system for Particle Reinforced Aluminum Matrix Composites [D]. Shanghai: Shanghai Institute of Technology, 2022. (in Chinese)
[63]ZHAO Q, CHEN K S, CHEN M Z, et al.Use of plastic correction formula to improve accuracy of welding resid-ual stress test with blind-hole method[J].Transactions of Tianjin University, 2018, 24(5):480-488
[64]YASHAR J, AHMADI M N.Comparison between contact and immersion ultrasonic method to evaluate welding residual stresses of dissimilar joints [J]. Materi-als and Design, 2012, 47: 473-482.
[65]LODH A, THOOL K, SAMAIDAR I.X-ray Diffrac-tion for the determination of residual stress of crystalline material: an overview[J].Transactions of the Indian In-stitute of Metals, 2022, 75(4):1-13
[66]DAEHEE S, GYUBAEK A, JEONGUNG P, et al.Welding residual stress distributions in the thickness di-rection under constraints using neutron diffraction and contour methods[J].Metals, 2022, 13(1):25-25
[67]邓新, 邱长军.云纹干涉法测量残余应力的研究现状[J]. 机械工程师, 2022, 2:78-80.
[68]DENG X, QIU C J.Research status of residual stress measurement by moire interferometry [J]. Mechanical Engineer, 2022, 2:78-80. (in Chinese)
[69]SULAIMAN S, TIM B, ELYAS G, et al.Assessment of corrosion fatigue in welded joints using 3D surface scans, digital image correlation, hardness measurements, and residual stress analysis [J]. International Journal of Fatigue, 2023, 176: 107866.
[70]陈金根.固体发动机无损检测新技术评述[J]. 推进技术, 1992, 4: 75-82.
[71]CHEN J G.A review of new techniques of NDT in solid rocket motor [J]. Journal of Propulsion Technology, 1992, 4: 75-82. (in Chinese)
[72]PAN Y, QU W Z, ZHANG S C, et al.A Nonlinear Ul-trasonic Method for Detection and Characterization of Dewetting Damage in Solid Propellant[J].Propellants, Explosives, Pyrotechnics, 2022, 47(10):e202200079-
[73]艾春安, 蔡笑风, 李剑, 等.时间反转的固体火箭发动机干耦合超声检测[J].哈尔滨工业大学学报, 2017, 49(2):145-150
[74]AI C A, CAI X F, LI J, et al.Dry-Coupled Ultrason-ic Detection of Solid Rocket Motor by Time Reversal Method[J].Journal of Harbin Institute of Technology, 2017, 49(2):145-150
[75]LI B J, LI J.Nondestructive testing technology of solid rocket engine based on acoustics [A]. 2022 IEEE Inter-national Conference on Electrical Engineering, Big Data and Algorithms (EEBDA) [C], Changchun, China, 2022.
[76]HUANG L C, LI J, LI B J.Experimental Research on Ultrasonic A-Scan Testing Technology of Composite Solid Propellant [J]. Journal of Physics: Conference Se-ries, 2022, 2338: 012011.
[77]JOHNSON E C, POLLCHIK J D.An Ultrasonic Test-ing Technique for Monitoring the Cure and Mechanical Properties of Polymeric Materials, Nondestructive Char-acterization of Materials VI [M]. 1994, Springer, 45-51.
[78]徐春广, 尹鹏, 张文君, 等.残余应力超声检测方法第五部分: 复合固体推进剂热固性浇注成型: Q/CNG226.5-2021[S]. 北京: 中国兵器工业集团有限公司, 2022.
[79]XU C G, YIN P, ZHANG W J, et al.Ultrasonic Testing Methods for Residual Stress Part 5: Thermosetting Cast-ing of Composite Solid Propellants: Q/CNG226.5-2021[S]. Beijing: China North Industries Group Corpo-ration Limited, 2022. (in Chinese)
[80]DAI J J, LI T B, XUAN Z L, et al.Automated Defect Analysis System for Industrial Computerized Tomogra-phy Images of Solid Rocket Motor Grains Based on YOLO-V4 Model[J].Electronics, 2022, 11(19):3215-3215
[81]王守道.射线法测定药柱的残余应力[J].含能材料, 1994, 2(4):35-39
[82]WANG S D.X-Ray Method of Residual Stress Meas-urement in Explosive Charges[J].Chinese Journal of Energetic Materials, 1994, 2(4):35-39
[83]陈靖华.塑料粘结炸药药柱残余应力的X射线衍射检测技术及应用[D]. 成都: 四川大学, 2008.
[84]CHEN J H.Studies on Technique and its Application of X-ray Diffraction Testing for Polymer Bonded Explo-sive [D]. Chengdu: Sichuan University, 2008. (in Chi-nese)
[85]NIU H, SUN W, LI R, et al.Quantifying the Crack-tip Residual Stress of Nickel-based Single-crystal Alloys at the Micron Scale by Focused Ion Beam and Digital Im-age Correlation [J]. Metallurgical and Materials Transac-tions, 2023, 54: 4215-4221.
[86]FATIH U, HECTOR B, KONSTANTINOS L, et al.Voxel-based Full-field Eigenstrain Reconstruction of Re-sidual Stresses in Additive Manufacturing Parts using Height Digital Image Correlation[J].Additive Manufac-turing, 2023, 77(5):103822-
[87]ALEXANDER J L, THOMAS A H, NASSIA T, et al.Measurement of Residual Stresses in Surrogate Coated Nuclear Fuel Particles Using Ring-core Focused Ion Beam Digital Image Correlation [J]. Nuclear Materials and Energy, 2023, 36: 101470.
[88]苏昂, 张大鹏, 张文沁, 等.线黏弹性材料数字图像相关实验教学探索[J].力学与实践, 2024, 46(1):201-207
[89]SU A, ZHANG D P, ZHANG W Q, et al.Experimental Teaching Exploration of Linear Viscoelastic Materials based on Digital Image Correlation[J].Mechanics in Engineering, 2024, 46(1):201-207
[90]巴德欣, 董永康.分布式光纤传感技术及其在航空航天领域的应用展望[J].宇航学报, 2020, 41(6):730-738
[91]BA D X, DONG Y K.Distributed Optical Fiber Sensor and Its Potential Applications in Health Monitoring of Aerospace Structures[J].Journal of Astronautics, 2020, 41(6):730-738
[92]张松涛, 金东晖, 屈文忠, 等.基于柔性传感器的固体火箭发动机界面应力监测[J].固体火箭技术, 2020, 43(4):511-517
[93]ZHANG S T, JIN D H, QU W Z, et al.Interface Stress Monitoring of Solid Rocket Motor with Embedded Flex-ible Sensor[J].Journal of Solid Rocket Technology, 2020, 43(4):511-517
[94]GAO Y, GUO F Y, CAO P, et a1.Winding-Locked Car-bon Nanotubes/Polymer Nanofibers Helical Yarn for Ul-trastretchable Conductor and Strain Sensor [J]. ACS Nano, 2020, 14:3442-3450.
[95]CHEN M J, AQUINO W, WALSH T F, et al.A General-ized Stress Inversion Approach with Application to Re-sidual Stress Estimation[J].Journal of applied mechan-ics, 2020, 87(11):111007-
[96]顾百骏, 陶祥泽, 赵颖涛.基于弹性理论的残余应力反演和变形计算[J].固体力学学报, 2024, 45(2):188-120
[97]GU B J, TAO X Z, ZHAO Y T.Residual Stress Inver-sion and Deformation Calculation Based on Theory of Elasticity[J].Chinese Journal of Solid Mechanics, 2024, 45(2):188-120
[98]HUANG J F, GUO K, LIU X T, et al.Residual Stress Prediction Across Dimensions using Improved Radial Basis Function based Eigenstrain Reconstruction [J]. Mechanics of Materials, 2023, 185: 104779.
[99]MORIN L, BRAHAM C, TAJDARY P, et al.Recon-struction of Heterogeneous Surface Residual-Stresses in Metallic Materials from X-Ray Diffraction Measure-ments [J]. Mechanics of Materials, 2021, 158: 103882.
[100]YUAN Z Y, WANG Y J, YANG G G, et al.Evolution of Curing Residual Stresses in Composite using Multi-Scale Method [J]. Composites Part B, 2018, 155: 49-61.
[101]HUI X Y, XU Y J, NIU J W, et al.Rapid Evaluation and Prediction of Cure-Induced Residual Stress of Compo-sites based on cGAN Deep Learning Model[J].Compo-site Structures, 2024, 330(15):117827-
[102]ZHANG W C, XU Y J, HUI X Y, et al.A Multi-Dwell Temperature Profile Design for the Cure of Thick CFRP Composite Laminates [J]. The International Journal of Advanced Manufacturing Technology, 2021, 117: 1133-1146.
[103]TANG W, XU Y, HUI X, et al.Multi-Objective Optimi-zation of Curing Profile for Autoclave Processed Com-posites: Simultaneous Control of Curing Time and Pro-cess-Induced Defects [J]. Polymers, 2022, 14: 2815.
[104]简力.复合固体推进剂药浆真空浇注除气过程仿真及参数优化[D]. 长沙: 国防科技大学, 2019.
[105]JIAN L.Simulation and Parameter Optimization of Vac-uum Casting Degassing Process for Composite Solid Propellant Slurry [D]. Changsha: National University of Defense Technology, 2019. (in Chinese)
[106]CUI Z X, LI H Y, SHEN Z B, et al.Analysis of Load Optimization in Solid Rocket Motor Propellant Grain with Pressure Curing [J]. International Journal of Aero-space Engineering, 2021, 2021, 5026878.
[107]MIAO Q W, ZHANG H H, SHEN Z B, et al.Multi-Objective Optimization of Stress-Release Boot of Solid Rocket Motor under Vertical Storage based on RBF Model [J]. International Journal of Aerospace Engineer-ing, 2022, 2022, 8475281.
[108]HAMED M R, SAEED T R, SEYED H M S, et al.Numerical Simulation of HTPB Resin Curing Process Using OpenFOAM and Study the Effect of Different Conditions on its Curing Time [J]. Propellants, Explo-sives, Pyrotechnics, 2021, 46, 1447.
[109]叶年辉, 胡少青, 李宏岩, 等.考虑性能及成本的固体火箭发动机多学科设计优化[J].推进技术, 2022, 43(7):75-84
[110]YE N H, HU S Q, LI H Y, et al.Multidisciplinary De-sign Optimization for Solid Rocket Motor Considering Performance and Cost[J].Journal of Propulsion Tech-nology, 2022, 43(7):75-84
[111]李文韬, 何允钦, 李文博, 等.固体火箭发动机三维装药的逆向设计与形状优化[J].航空学报, 2024, 45(11):529089-
[112]LI W T, HE Y Q, LI W B, et al.D Grain Reverse De-sign and Shape Optimization for Solid Rocket Motor[J].Acta Aeronautica et Astronautica Sinica, 2024, 45(11):529089-
[113]KAMRAN A, GUOZU L.An Integrated Approach for Optimization of Solid Rocket Motor[J].Aerospace Sci-ence and Technology, 2012, 17(1):50-64
[114]雷勇军, 袁端才, 何煌.固体发动机星形药柱的形状优化分析[J].国防科技大学学报, 2008, 30(4):6-10
[115]LEI Y J, YUAN D C, HE H.The Shape Optimization Analysis of Solid Motor Star Grain[J].Journal of Na-tional University of Defense Technology, 2008, 30(4):6-10
[116]蒙上阳, 唐国金, 雷勇军.低温环境下固体火箭发动机药柱伞盘结构设计[J].推进技术, 2004, 25(5):397-400
[117]MENG S Y, TANG G J, LEI Y J.Design for the Um-brella Slot Configuration of the Solid Rocket Motor Grain under Low Temperature Condition[J].Journal of Propulsion Technology, 2004, 25(5):397-400
[118]李磊.基于结构完整性分析的固体火箭发动机药形改进与优化设计[D]. 长沙: 国防科学技术大学, 2011.
[119]LI L.Shape Improvement and Optimization of Solid Rocket Motor Grain Based on Structural Integrity Anal-ysis [D]. Changsha: National University of Defense Technology, 2011. (in Chinese)
[120]彭超.复杂载荷下固体火箭发动机装药应力释放槽优化设计[D]. 南京: 南京理工大学, 2014.
[121]PENG C.Optimal Design of the Stress-Releaser Struc-ture of Propellant Gain under Complex Load [J]. Nan-jing: Nanjing University of Science and Technology, 2014. (in Chinese)
[122]王晨飞.大长径比复杂装药结构完整性分析[D]. 南京: 南京理工大学, 2018.
[123]WANG C F.Analysis on Structural Integrity of Com-plex Charge with Large Length-Diameter Ratio [J]. Nan-jing: Nanjing University of Science and Technology, 2018. (in Chinese)
[124]YANG H Z, HONG S H, WANG Y.A Sequential Multi-Fidelity Surrogate-Based Optimization Methodology Based on Expected Improvement Reduction[J].Struc-tural and Multidisciplinary Optimization, 2022, 65(5):153-170
[125]YANG J W, WU Z P, WANG W J, et al.A Surrogate-Based Optimization Method for Mixed-Variable Air-craft Design[J].Engineering Optimization, 2022, 54(1):113-133
[126]YOO K, HAN S.Modified ant colony optimization for topology optimization of geometrically nonlinear struc-tures[J].International Journal of Precision Engineering and Manufacturing, 2014, 15(4):679-687
[127]SHIRAZI N R M, MOLLAMAHMOUDI H, SEYEDPOOR M S.Structural Damage Identification Using an Adaptive Multi-Stage Optimization Method Based on a Modified Particle Swarm Algorithm[J].Journal of Optimization Theory and Applications, 2014, 160(3):1009-1019
[128]ZHU L, LUO H W, WANG P C, et al.Uncertainty Anal-ysis and Design Optimization of Solid Rocket Motors with Finocyl Grain [J]. Structural and Multidisciplinary Optimization, 2020, 62:3521–3537.
[129]AN H C, YOUN D B, SOO H K.Variable-Stiffness Composite Optimization Using Dynamic and Exponen-tial Multi-Fidelity Surrogate Models [J]. International Journal of Mechanical Sciences, 2023, 257: 108547.
[130]HU J, ZHANG L, LIN Q, et al.A Conservative Multi-Fidelity Surrogate Model-Based Robust Optimization Method for Simulation-Based Optimization [J]. Structur-al and Multidisciplinary Optimization, 2021, 64: 2525-2551.
[131]LI K P, LI Q Y, LV L Y, et al.A Nonlinearity Integrated Bi-fidelity Surrogate Model Based on Nonlinear Map-ping [J]. Structural and Multidisciplinary Optimization, 2023, 66: 196.