[1]. 王彬文, 陈先民, 苏运来, 等. 中国航空工业疲劳与结构完整性研究进展与展望[J]. 航空学报, 2021, 42(5): 1-39.
WANG B W, CHEN X M, SU Y L, et al. Research progress and prospect of fatigue and structural integrity for aeronautical industry in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524651 (in Chinese).
[2]. 孙侠生, 苏少普, 孙汉斌, 等. 国外航空疲劳研究现状及展望[J]. 航空学报, 2021, 42(5): 40-65.
SUN X S, SU S P, SUN H B, et al. Current status and prospect of overseas research on aeronautical fatigue[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524791 (in Chinese).
[3]. 崔德刚,鲍蕊,张睿,等.飞机结构疲劳与结构完整性发展综述[J].航空学报,2021,42(5):524394.
CUI D G,BAO R, ZHANG R, etal. Development of aircraft structural fatigue and structural integrity: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524394 (inChinese)
[4]. TUEGEL E J, INGRAFFEA A R, EASON T G, et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011, 2011: 154798.
[5]. 董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2021, 42(3): 107-135.
DONG L T, ZHOU X, ZHAO F B, et al. Key technologies for modeling and simulation of airframe digital twin[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 023981 (in Chinese).
[6]. ARTHUR R, FRENCH M, GANGULI J S, et al. Digital twin: definition & value [EB/OL]. AIAA & AIA, 2020. (2020-12) [2024-04-10]. https://www.aiaa.org/docs/default-source/uploadedfiles/issues-and-advocacy/policy-papers/digital-twin-institute-position-paper-(december-2020).pdf
[7]. GLAESSGEN E H, STARGEL D S. The digital twin paradigm for future NASA and U.S. air force vehicles[C]//53rd Structures, Structural Dynamics, and Materials Conference. Hawaii, 2012.
[8]. MILLWATER H, OCAMPO J, CROSBY N. Probabilistic methods for risk assessment of airframe digital twin structures[J]. Engineering Fracture Mechanics, 2019, 221: 106674.
[9]. MADNI A M, MADNI C C, LUCERO S D. Leveraging digital twin technology in model-based systems engineering[J]. Systems, 2019, 7(1): 7.
[10]. KAPTEYN MICHAEL G., PRETORIUS JACOB V. R., WILLCOX KAREN E. A probabilistic graphical model foundation for enabling predictive digital twins at scale[J]. Nature Computational Science, 2021, 1(5).
[11]. LI L, ASLAM S, WILEMAN A, et al. Digital twin in aerospace industry: a gentle introduction[J]. IEEE Access, 2022, 10: 9543-9562.
[12]. AYDEMIR H, ZENGIN U, DURAK U. The digital twin paradigm for aircraft review and outlook[C]//AIAA Scitech 2020 Forum. Orlando, 2020.
[13]. XIONG M, WANG H. Digital twin applications in aviation industry: a review[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(9): 5677-5692.
[14]. 张冰, 李欣, 万欣欣. 从数字孪生到数字工程建模仿真迈入新时代[J]. 系统仿真学报, 2019, 31(3): 369-376.
ZHANG B, LI X, WAN X X. From digital twin to digital engineering modeling and simulation entering a new era[J]. Journal of System Simulation, 2019, 31(3): 369-376 (in Chinese)
[15]. 刘亚威. 管窥美军数字工程战略——迎接数字时代的转型[J]. 科技中国, 2018(3): 30-33.
LIU Y W. A glance at the digital engineering strategy of the us army: embracing the transformation of the digital era[J]. Scitech in China, 2018(3): 30-33 (in Chinese)
[16]. NORQUIST D L. DOD digital modernization strategy[R]. Washington, D.C: Office of prepublication and security review of Department of Defense, 2019.
[17]. BRAY W P. Digital systems engineering transformation strategy[R]. Washington, D.C: United States Navy and Marine Corps, 2020.
[18]. 王巍巍, 王乐. 美国数字工程战略发展分析[J]. 航空动力, 2022(5): 23-26.
WANG W W, WANG L. Analysis to the development of U.S. digital engineering strategy[J]. Aerospace Power, 2022(5): 23-26 (in Chinese)
[19]. 王林尧, 赵滟, 张仁杰. 数字工程研究综述[J]. 系统工程学报, 2023, 38(2): 265-274.
WANG L X, ZHAO Y, ZHANG R J. Review of digital engineering research[J]. Journal of System Engineering, 2023, 38(2): 265-274. (in Chinese).
[20]. 崔艳林, 王巍巍, 王乐. 美国数字工程战略实施途径[J]. 航空动力, 2021(4): 84-86.
CUI Y L, WANG W W, WANG L. US digital engineering implementation strategy[J]. Aerospace Power, 2021(4): 84-86. (in Chinese).
[21]. 王树博, 杜斌, 姜百汇. 美军数字工程的战略实施及当前能力分析[J]. 战术导弹技术, 2023(6): 22-26+46.
WANG S B, DU B, JIANG B H. Analysis of the US Army’s digital engineering strategy and formed capability[J]. Tactical Missile Technology,2023(6):22-26+46. (in Chinese).
[22]. 卫旭芳, 刘彬. 美军数字工程建设发展研究及启示[J]. 航空兵器, 2023, 30(3): 56-66.
WEI X F, LIU B. Research on the development of US military digital engineering and its enlightenment[J]. Aero Weaponry, 2023, 30(3): 56-66. (in Chinese).
[23]. RAMING M, SEDGWICK H, SMITH L, et al. A-10 implementing prognostics with the digital thread[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[24]. Vinoski J. Virtual Twins Are Helping The U.S. Military Keep Its Older Aircraft Flying [EB/OL]//Forbes. (2023-12-14)[2024-04-10]. https://www.forbes.com/sites/jimvinoski/2021/03/15/virtual-twins-are-helping-the-us-military-keep-its-older-aircraft-flying/?sh=2330613471b2.
[25]. JONES K, BRADLEY K K, BRYCE L H, et al. F-16 the inherent need for holistic structural integrity application and progress[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[26]. GRIFFIN M D, BALDWIN K, STANLEY J, et al. Digital engineering strategy [EB/OL]. Washington, DC, Department of Defense, 2018. (2018-11-12) [2024-04-10]. https://www.acq.osd.mil/se/docs/2018-DES.pdf.
[27]. International committee on aeronautical fatigue and structural integrity. national review of China[M]. Delft: The Netherlands, 2023.
[28]. 於之杰,郭玉佩,孙汉斌,等.先进材料及工艺的结构完整性研究进展[J/OL].航空学报,(2024-03-12)[2024-06-18]. http://kns.cnki.net/kcms/detail/11.1929.V.20240311.1849.012.html.
YU Z J, GUO Y P, SUN H B, et al. Recent progress in structural integrity of novel materials and advanced techniques[J]. Acta Aeronautica et Astronautica Sinica, (2024-03-12)[2024-06-18]. http://kns.cnki.net/kcms/detail/11.1929.V.20240311.1849.012.html. (in Chinese).
[29]. 田阔, 孙志勇, 李增聪. 面向结构静力试验监测的高精度数字孪生方法[J]. 航空学报, 2024, 45(7): 288-299.
TIAN K, SUN Z Y, LI Z C. High-precision digital twin method for structual static test monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 288-299. (in Chinese).
[30]. ESMAEILI H, RIZVI R. An accelerated strategy to characterize mechanical properties of polymer composites using the ensemble learning approach[J]. Computational Materials Science, 2023, 229: 112432.
[31]. ESMAEILI H, RIZVI R. Machine learning predictions and benchmarking of non-linear mechanical behavior of polymer composites[C]//Behavior and Mechanics of Multifunctional Materials XVII. Long Beach: SPIE, 2023: 128-134.
[32]. YI M, XUE M, CONG P, et al. Machine learning for predicting fatigue properties of additively manufactured materials[J]. Chinese Journal of Aeronautics, 2024, 37(4): 1-22.
[33]. WHELAN G F, GONG J, OLSON G B. Using digital twins to accelerate qualification of fatigue critical components[C] // Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[34]. HANSEN C K, WHELAN G F, HOCHHALTER J D. Interpretable machine learning for microstructure-dependent models of fatigue indicator parameters[J]. International Journal of Fatigue, 2024, 178: 108019.
[35]. KALIDINDI S R, BUZZY M, BOYCE B L, et al. Digital twins for materials[J]. Frontiers in Materials, 2022, 9: 818535.
[36]. COGSWELL D, PARAMATMUNI C, SCOTTI L, et al. Guidance for materials 4.0 to interact with a digital twin[J]. Data-Centric Engineering, 2022, 3: e21.
[37]. 张卫红, 唐长红. 航空航天装备的轻量化:挑战与未来[J]. 航空学报, 2024, 45(5): 9-15+4.
ZHANG W H, TANG C H. Lingweighting of aerospace and aeronautical equipment: challenges and perspectives[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 9-15+4. (in Chinese).
[38]. SHABANI P, LI L, LALIBERTE J, et al. High-fidelity simulation of low-velocity impact damage in fiber-reinforced composite laminates using integrated discrete and continuum damage models[J]. Composite Structures, 2023, 313: 116910.
[39]. LI L, SHABANI P, LALIBERTE J, et al. Virtual testing of low-velocity impact response of a composite laminate – from analytical to high-fidelity modelling[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[40]. GHIASVAND S, AIROLDI A, SALA G, et al. Meso-scale models for the interaction of damage modes in composites laminates[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[41]. GHIASVAND S, AIROLDI A, BETTINI P, et al. Analysis of residual stresses and interface damage propagation in hybrid composite/ metallic elements monitored through optical fiber sensors[J]. Aerospace Science and Technology, 2022, 129: 107373.
[42]. 司瑞, 陈勇. 民用飞机增材制造技术应用发展趋势[J]. 航空学报, 2024, 45(5): 78-97.
SI R, CHEN Y. Application trends of additive manufacturing technology for civil aircraft[J]. Acta Aeronautica et Astronatica Sinica, 2024, 45(5): 78-97. (in Chinese).
[43]. PHUA A, DAVIES C H J, DELANEY G W. A digital twin hierarchy for metal additive manufacturing[J]. Computers in Industry, 2022, 140: 103667.
[44]. RACHMAWATI S M, PUTRA M A P, LEE J M, et al. Digital twin-enabled 3D printer fault detection for smart additive manufacturing[J]. Engineering Applications of Artificial Intelligence, 2023, 124: 106430.
[45]. ODADA C A, BYIRINGIRO J B, MWEMA F M. Development of data-driven digital twin for real-time monitoring of FDM 3D printer[J]. Designs, 2021, 5, 0.
[46]. PARIPOORANAN C S, ABISHEK R, VIVEK D C, et al. An implementation of AR enabled digital twins for 3-D printing[C]//2020 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). Chennai, 2020: 155-160.
[47]. International committee on aeronautical fatigue and structural integrity. national review of Switzerland[M]. Delft: The Netherlands, 2023.
[48]. International committee on aeronautical fatigue and structural integrity. national review of France[M]. Delft: The Netherlands, 2023.
[49]. 聂珊珊, 聂小华. 多层级有限元模型数据库综合设计与应用[J]. 工程与试验, 2021, 61(4): 84-86.
NIE S S, NIE X H. Comprehensive design and application of multi-level finite element model database[J]. Engineering & Test, 2021, 61(4): 84-86. (in Chinese).
[50]. 王彬文, 聂小华, 万春华, 等. 全机静强度虚拟试验技术研究及应用[J]. 航空学报, 2022, 43(6): 171-183.
WANG B W, NIE X H, WAN C H, et al. Research and application of virtual test technology for static strength of the full scale aircraft structure[J]. Acta Aeronautica et Astronatica Sinica, 2022, 43(6): 171-183. (in Chinese).
[51]. PANETTIERI E, MONTEMURRO M, FANTERIA D, et al. Multi-scale least-weight design of a wing-box through a global/local modelling approach[J]. Journal of Optimization Theory and Applications, 2020, 187(3): 776-799.
[52]. IZZI M I, MONTEMURRO M, CATAPANO A, et al. Multi-scale optimisation of thin-walled structures by considering a global/local modelling approach[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2021, 235(2): 171-188.
[53]. IZZI M I, MONTEMURRO M, CATAPANO A, et al. A multi-scale two-level optimisation strategy integrating a global/local modelling approach for composite structures[J]. Composite Structures, 2020, 237: 111908.
[54]. NATIVIDAD G, TURK S, TSOI K, et al. Comparative strain survey of an aerospace structure using distributed fiber optic strain sensing technology[C]//The 9th Asia-Pacific Workshop on Structural Health Monitoring (9APWSHM). Cairns, 2023: 357-364
[55]. NATIVIDAD G, TURK S, TSOI K, et al. Distributed fibre optic sensing and adhesion strategies for strain evaluation of an aircraft structure[C]//AIAC 2023: 20th Australian International Aerospace Congress. Melbourne: Engineers Australia, 2023: 63-68.
[56]. KORTENIEMI T, PIRTOLA J, MIETTINEN A, et al. Development of national MRO capability for a basic trainer aircraft: flight and ground tests[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[57]. International committee on aeronautical fatigue and structural integrity. national review of Brazil[M]. Delft: The Netherlands, 2023.
[58]. DE SOUZA MELLO F M, PEREIRA J L J, GOMES G F. Multi-objective sensor placement optimization in helicopter main rotor blade considering the number of sensors and mode shape interpolation[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[59]. PEREIRA J L J, FRANCISCO M B, DE OLIVEIRA L A, et al. Multi-objective sensor placement optimization of helicopter rotor blade based on feature selection[J]. Mechanical Systems and Signal Processing, 2022, 180: 109466.
[60]. DUI H, LIU D, ZHANG L. Optimization of selecting strain measurement locations for distributed load recovery from strain measurements[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[61]. PAN S Z, ZHONG G Y, LIU X D. Research on structural damage identification methods for aircraft full scale fatigue test[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[62]. RAJIC N, BROOKS C, VAN DER VELDEN S, et al. A stress imaging capability for the digital enterprise[C]//AIAC 2023: 20th Australian International Aerospace Congress. Melbourne: Engineers Australia, 2023: 32-38
[63]. BROOKS C, RAJIC N. Automated visual tracking of crack growth in coupon and component level fatigue testing using thermoelastic stress analysis[J]. International Journal of Fatigue, 2022, 163: 107037.
[64]. MINIGHER P. Shape sensing and load reconstruction for static and dynamic applications[D]. Delft: Delft University of Technology, 2022.
[65]. MINIGHER P, GUNDLACH J, CASTRO S G P, et al. Shape sensing with sparse strain information for aerospace applications [DB/OL]. Engrxiv: 2546, 2022.
[66]. DUI H N, LIU D L, ZHANG Z X, et al. An inverse approach based on euclidean space for determining structural load distribution from strain measurements[C]//32nd congress of the international council of the aeronatical sciences(ICAS 2021). Shanghai, 2021.
[67]. 兑红娜, 刘栋梁, 张志贤, 等. 基于应变测量的结构载荷分布反演方法[J]. 航空学报, 2021, 42(5): 300-307.
DUI H N, LIU D L, ZHANG Z X, et al. Distributed load recovery approach based on strain measurements[J]. Acta Aeronautica et Astronatica Sinica, 2021, 42(5): 300-307. (in Chinese).
[68]. International committee on aeronautical fatigue and structural integrity. national review of Australia[M]. Delft: The Netherlands, 2023.
[69]. International committee on aeronautical fatigue and structural integrity. national review of Israel[M]. Delft: The Netherlands, 2023.
[70]. FREED Y. Determination of composite material finite width correction factors using machine learning strategies[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[71]. ZHENG J, WANG M, ZHANG L, et al. Rigid loading accelerates full-scale aircraft fatigue test[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[72]. 王彬文, 艾森, 张国凡, 等. 考虑不确定性的复合材料加筋壁板后屈曲分析模型验证方法[J]. 航空学报, 2020, 41(8): 280-287.
WANG B W, AI S, ZHANG G F, et al. validation method for post-bucking analysis model of stiffened composite panel considering uncertainties[J]. Acta Aeronautica et Astronatica Sinica, 2020, 41(8): 280-287. (in Chinese).
[73]. 吴斌, 王向明, 玄明昊, 等. 基于增材制造的新型战机结构创新[J]. 航空材料学报, 2021, 41(6): 1-12.
WU B, WANG X M, XUAN M H, et al. Structural innovation of new fighter based on additive manufacturing[J]. Journal of Aeronautical Materials, 2021, 41(6): 1-12. (in Chinese).
[74]. 雷鸣, 卢晓东, 霍幸莉. 飞机颤振试飞操纵面脉冲激励响应仿真方法研究[J]. 装备环境工程, 2020, 17(9): 48-53.
LEI M, LU X D, HUO X L. Simulation method of control surface impulse response of aircraft flutter flight test[J]. Equipment Environment Engineering, 2020, 17(9): 48-53. (in Chinese).
[75]. 寇宝智, 雷鸣, 卢晓东. 基于LPV模型的颤振试飞响应预测及激励优化[J]. 振动与冲击, 2022, 41(2): 103-112.
KOU B Z, LEI M, LU X D. Response prediction and excitation optimization of flight flutter tests based on a LPV model[J]. Equipment Environment Engineering, 2022, 41(2): 103-112. (in Chinese).
[76]. 王强, 赵勇, 倪孟龙. 高干涉量压合衬套强化铝合金孔结构的疲劳性能[J]. 机械工程材料, 2020, 44(7): 46-50.
WANG Q, ZHAO Y, NI M L. Fatigue properties of aluminum alloy hole structure strengthened by high interference fit bushing technique[J]. Materials for Mechanical Engineering, 2020, 44(7): 46-50. (in Chinese).
[77]. 张志贤, 张立新, 王凡. 压合衬套强化耳片的疲劳寿命评估[J]. 航空科学技术, 2022, 33(3): 97-105.
ZHANG Z X, ZHANG L X, WANG F. Evaluation of fatigue life of lug with cold expanded bushing[J]. Aeronautical Science & technology, 2022, 33(3): 97-105. (in Chinese).
[78]. 黄维娜, 黎方娟, 祁宏斌. 航空发动机数字工程初步研究与发展思考[J]. 航空学报, 2024, 45(5): 136-153.
HUANG W N, LI F J, QI H B. Preliminary investigation and throughs on aero-engine digital engineering development[J]. Aeronautica et Astronautica Sinica, 2024, 45(5): 136-153. (in Chinese).
[79]. 孙霄剑, 罗明强, 张驰, 等. 民用飞机预研论证权威真相源构建技术[J]. 航空学报, 2021, 42(2): 127-141.
SUN X J, LUO M Q, ZHANG C, et al. Construction technology of authoritative source of truth for civil aircraft pre-research[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 127-141. (in Chinese).
[80]. International committee on aeronautical fatigue and structural integrity. national review of UK[M]. Delft: The Netherlands, 2023.
[81]. HOOLE J, BOOKER J, COOPER J. Helicopter flight manoeuvre statistics via ADS-B: an initial investigation using the opensky network[J]. Engineering Proceedings, 2021, 13, 10.
[82]. HOOLE J, SARTOR P, BOOKER J D, et al. Landing gear ground manoeuvre statistics from automatic dependent surveillance-broadcast transponder data[J]. The Aeronautical Journal, 2021, 125(1293): 1942-1976.
[83]. International committee on aeronautical fatigue and structural integrity. national review of Italy[M]. Delft: The Netherlands, 2023.
[84]. LEONI J, ZINNARI F, VILLA E, et al. Flight regimes recognition in actual operating conditions: A functional data analysis approach[J]. Engineering Applications of Artificial Intelligence, 2022, 114: 105016.
[85]. CHEUNG C, BIONDIC C, HAMAIMOU Z A, et al. An approach to merging machine learning models in an ensemble for load estimation[C]//12th DST International Conference on Health and Usage Monitoring. Melbourne. 2021.
[86]. CHEUNG C, BIONDIC C, HAMAIMOU Z, et al. Modeling health status identification in a gas turbine system: three-class classification approaches[J]. Annual Conference of the PHM Society, 2021, 13(1).
[87]. ZHOU X, DZIENDZIKOWSKI M, DRAGAN K, et al. In-service load monitoring for an UAV digital twin[C]//Proceedings of the 11th European Workshop on Structural Health Monitoring (EWSHM 2024). Mayen: NDT.net, 2024.
[88]. International committee on aeronautical fatigue and structural integrity. national review of Canada[M]. Delft: The Netherlands, 2023.
[89]. LEE K J, LEE J R. Robotic-based laser ultrasonic non-destructive testing of 3D-printed continuous fiber reinforced flight control surface[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft. 2023.
[90]. LEE K J, JEON M S, LEE J R. Evaluation of manufacturing defects in 3D printed carbon fiber reinforced cylindrical composite structure based on laser ultrasonic testing[J]. NDT & E International, 2023, 135: 102802.
[91]. PANT S, GENEST M, IBARRA-CASTANEDO C, et al. Inspection of a helicopter blade using drone-based active thermography[C]//Thermosense: Thermal Infrared Applications XLV. Orlando: SPIE, 2023: 125360T-1-125360T-7.
[92]. MANDACHE C, DESNOYERS R, BOMBARDIER Y. Crack growth monitoring with structure-bonded thin and flexible coils[J]. Sensors, 2022, 22(24): 9958.
[93]. AMJAD K, LAMBERT P, MIDDLETON C A, et al. A thermal emissions-based real-time monitoring system for in situ detection of fatigue cracks[J]. Proceedings of the Royal Society A, 2022, 478(2266): 20210796.
[94]. MIDDLETON C A, AMJAD K, GREENE R J, et al. Industrial application of a low-cost structural health monitoring system in large-scale airframe tests[J]. The Journal of Strain Analysis for Engineering Design, 2024, 59(3): 218-225.
[95]. International committee on aeronautical fatigue and structural integrity. national review of Netherlands[M]. Delft: The Netherlands, 2023.
[96]. GROOTEMAN F. Multiple load path damage detection with optical fiber Bragg grating sensors[J]. Structural Health Monitoring, 2021, 20(1): 46-57.
[97]. MARINHO N R, LOENDERSLOOT R, GROOTEMAN F, et al. Impact identification method for structural health monitoring of stiffened composite panels using passive sensing systems[J]. Proceedings of the 11th European Workshop on Structural Health Monitoring (EWSHM 2024). Potsdam: NDT.net, 2024.
[98]. FERRI I S. Dynamic continuous fiber optical strain sensing for damage diagnosis on beam-like composite structures[D]. Delft: Delft University of Technology, 2022.
[99]. FALCETELLI F, DI SANTE R, TROIANI E. Strategies for embedding optical fiber sensors in additive manufacturing structures[C]//European Workshop on Structural Health Monitoring: Special Collection of 2020 Papers-Volume 2. Potsdam: Springer International Publishing, 2021: 362-371.
[100]. ELSHERKISI M, DUARTE MARTINEZ F, MASON-FLUCKE J, et al. Interaction of stress corrosion cracks in single crystals Ni-Base superalloys[J]. Engineering Fracture Mechanics, 2024, 298: 109899.
[101]. 董雷霆, 贺双新. 旋转部件SGBEM-FEM耦合热弹性断裂分析[J]. 北京航空航天大学学报, 2022, 48(9): 1702-1709.
DONG L T, HE S X. Sgbem-fem coupling for thermoelastic fracture mechanics analysis of rotational components[J] Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1702-1709 (in Chinese)
[102]. ZHOU X, HE S X, DONG L T. Real-time prediction of probabilistic crack growth with a helicopter component digital twin[J]. AIAA Journal, 2022, 60(4): 2555-2567.
[103]. ZHAO F B, ZHOU X, WANG C Y, et al. Setting adaptive inspection intervals in helicopter components, based on a digital twin[J]. AIAA Journal, 2023, 61(6): 2675-2688.
[104]. LIU H H, QI G, RENAUD G, et al. Application of the effective crack length method to model delamination of unidirectional composite laminates under mode II shear loadings[J]. Composites Part C: Open Access, 2023, 12: 100401.
[105]. LIU H H, QI G, KIM I Y. Comparative study of different damage modelling techniques for composite laminate interlaminar failures – a case study approach[C]//NAFEMS World Congress 2023. Tampa, 2023.
[106]. ORSATELLI J B, PAROISSIEN E, LACHAUD F, et al. Bonded flush repairs for aerospace composite structures: a review on modelling strategies and application to repairs optimization, reliability and durability[J]. Composite Structures, 2023, 304: 116338.
[107]. ORSATELLI J B, PAROISSIEN E, LACHAUD F, et al. Influence of modelling hypotheses on strength assessment of CFRP stepped repairs[J]. International Journal of Adhesion and Adhesives, 2024, 132: 103682.
[108]. MARQUES D, VANDEPITTE D, TITA V. Sensitivity and uncertainty analysis for structural health monitoring with crack propagation under random loads: a numerical framework in the frequency domain[J]. Fatigue & Fracture of Engineering Materials & Structures, 2023, 46(1): 137-152.
[109]. MARQUES D E T, VANDEPITTE D, TITA V. Damage detection and fatigue life estimation under random loads: A new structural health monitoring methodology in the frequency domain[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(6): 1622-1636.
[110]. 赵福斌, 周轩, 董雷霆. 基于数字孪生的飞机蒙皮裂纹智能检查维修策略[J]. 固体力学学报, 2021, 42(3): 277-286.
ZHAO F B, ZHOU X, DONG L T. An intelligent digital-twin-based strategy for the inspection and repair of aircraft skin cracks[J]. Chinese Journal of Solid Mechanics, 2021, 42(3): 277-286. (in Chinese)
[111]. ZHOU X, SBARUFATTI C, GIGLIO M, et al. Copula-based collaborative multi-structure damage diagnosis and prognosis for fleet maintenance digital twins[J]. AIAA Journal, 2023, 61(10): 4735-4740.
[112]. KHAN M, GENEST M. Human factor effects on nondestructive inspection of aerospace structures[C]//Proceeding of the 16th Asia Pacific Conference for Non-Destructive Testing (APCNDT). Melbourne, 2023.
[113]. PAES LEMES C A, ANDRéS ARBELO M, BARBOSA A F, et al. A probabilistic methodology for analysis of secondary cracks in riveted structures[C]. AIAA AVIATION Forum. San Diego, 2023.
[114]. RENAUD G, DIONNE é, LIAO M. Probabilistic lifing of a second oversize hole modification[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[115]. GENEST M, PANT S, KHAN M, et al. Probability of detection of automated tap testing for disbond detection in metallic honeycomb structures[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft. 2023.
[116]. LIAO M, RENAUD G, BOMBARDIER Y. Digital twin technology development and demonstration for aircraft structural life-cycle management[C]//NDE 4.0, Predictive Maintenance, Communication, and Energy Systems: The Digital Transformation of NDE, 2023: 16-26.
[117]. RENAUD G, LIAO M, BOMBARDIER Y. Demonstration of an airframe digital twin framework using a CF-188 full-scale component test[C]//ICAF 2019 – Structural Integrity in the Age of Additive Manufacturing. Cham: Springer International Publishing, 2020: 176-186.
[118]. BOMBARDIER Y, RENAUD G, LIAO M. Development and demonstration of damage tolerance airframe digital twin methods and tools[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[119]. GOMEZ-ESCALONILLA J, SANCHEZ F, VALENCIA O, et al. A holistic digital twin for service life extension programs[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[120]. ASILISKENDER A, PEIRó J, LEE K Y, et al. Predicting filling efficiency of composite resin injection repair[J]. Composites Part A: Applied Science and Manufacturing, 2023, 174: 107708.
[121]. CHEN J, WU W, REN Y, et al. Fatigue Crack evaluation with the guided wave–convolutional neural network ensemble and differential wavelet spectrogram[J]. Sensors, 2022, 22(1): 307.
[122]. LI T, LOMAZZI L, CADINI F, et al. Numerical simulation-aided particle filter-based damage prognosis using lamb waves[J]. Mechanical Systems and Signal Processing, 2022, 178: 109326.
[123]. 陶飞, 马昕, 胡天亮, 等. 数字孪生标准体系[J]. 计算机集成制造系统, 25(10): 2405-2418.
TAO F, MA X, HU, T L, et al. Research on digital twin standard system[J]. Computer Integrated Manufacturing Systems, 25(10): 2405-2418. (in Chinese).
[124]. International Organization for Standardization, International Electrotechnical Commission. Digital twin - concepts and terminology: ISO/IEC 30173:2023[S]. Geneva: International Organization for Standardization, 2023: 1-28.
[125]. International Organization for Standardization, International Electrotechnical Commission. Internet of things (IoT) - digital twin - use case: ISO/IEC TR 30172:2023[S]. Geneva, International Organization for Standardization, 2023: 1-171.
[126]. TAO F, SUN X, CHENG J, et al. MakeTwin: A reference architecture for digital twin software platform[J]. Chinese Journal of Aeronautics, 2024, 37(1): 1-18.