Research process and prospects of digital engineering and digital twin in the field of aeronautical fatigue and structural integrity

  • DAI Ding-Qiang ,
  • ZHOU Xuan ,
  • DONG Lei-Ting ,
  • SUN Xia-Sheng
Expand

Received date: 2024-08-01

  Revised date: 2024-10-15

  Online published: 2024-10-15

Abstract

Aeronautical fatigue and structural integrity are critical throughout the entire life cycle of an aircraft, ensuring flight safety. Digital engineering, as an integrated digital method, offers efficient, reliable, and economical solutions for aircraft structural design, verification, operation and maintenance. It represents a significant future direction for aircraft structural safety design and sustainability. Central to digital engineering is the emphasis on models, with digital twin playing a pivotal role in integrating various models and measured data to achieve accurate assessments and maintenance of fatigue and structural integrity. This paper, informed by recent research findings presented at the 31st symposium of International Committee on Aeronautical Fatigue (ICAF), reviews the progress in key technologies related to digital engineering and digital twins, alongside their application in aircraft structural design, verification, operation and maintenance. Finally, the paper offers perspectives on future developments in these technologies to encourage the further advancement and application of digital engineering and digital twin concepts.

Cite this article

DAI Ding-Qiang , ZHOU Xuan , DONG Lei-Ting , SUN Xia-Sheng . Research process and prospects of digital engineering and digital twin in the field of aeronautical fatigue and structural integrity[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.31022

References

[1]. 王彬文, 陈先民, 苏运来, 等. 中国航空工业疲劳与结构完整性研究进展与展望[J]. 航空学报, 2021, 42(5): 1-39.
WANG B W, CHEN X M, SU Y L, et al. Research progress and prospect of fatigue and structural integrity for aeronautical industry in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524651 (in Chinese).
[2]. 孙侠生, 苏少普, 孙汉斌, 等. 国外航空疲劳研究现状及展望[J]. 航空学报, 2021, 42(5): 40-65.
SUN X S, SU S P, SUN H B, et al. Current status and prospect of overseas research on aeronautical fatigue[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524791 (in Chinese).
[3]. 崔德刚,鲍蕊,张睿,等.飞机结构疲劳与结构完整性发展综述[J].航空学报,2021,42(5):524394.
CUI D G,BAO R, ZHANG R, etal. Development of aircraft structural fatigue and structural integrity: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524394 (inChinese)
[4]. TUEGEL E J, INGRAFFEA A R, EASON T G, et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011, 2011: 154798.
[5]. 董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2021, 42(3): 107-135.
DONG L T, ZHOU X, ZHAO F B, et al. Key technologies for modeling and simulation of airframe digital twin[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 023981 (in Chinese).
[6]. ARTHUR R, FRENCH M, GANGULI J S, et al. Digital twin: definition & value [EB/OL]. AIAA & AIA, 2020. (2020-12) [2024-04-10]. https://www.aiaa.org/docs/default-source/uploadedfiles/issues-and-advocacy/policy-papers/digital-twin-institute-position-paper-(december-2020).pdf
[7]. GLAESSGEN E H, STARGEL D S. The digital twin paradigm for future NASA and U.S. air force vehicles[C]//53rd Structures, Structural Dynamics, and Materials Conference. Hawaii, 2012.
[8]. MILLWATER H, OCAMPO J, CROSBY N. Probabilistic methods for risk assessment of airframe digital twin structures[J]. Engineering Fracture Mechanics, 2019, 221: 106674.
[9]. MADNI A M, MADNI C C, LUCERO S D. Leveraging digital twin technology in model-based systems engineering[J]. Systems, 2019, 7(1): 7.
[10]. KAPTEYN MICHAEL G., PRETORIUS JACOB V. R., WILLCOX KAREN E. A probabilistic graphical model foundation for enabling predictive digital twins at scale[J]. Nature Computational Science, 2021, 1(5).
[11]. LI L, ASLAM S, WILEMAN A, et al. Digital twin in aerospace industry: a gentle introduction[J]. IEEE Access, 2022, 10: 9543-9562.
[12]. AYDEMIR H, ZENGIN U, DURAK U. The digital twin paradigm for aircraft review and outlook[C]//AIAA Scitech 2020 Forum. Orlando, 2020.
[13]. XIONG M, WANG H. Digital twin applications in aviation industry: a review[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(9): 5677-5692.
[14]. 张冰, 李欣, 万欣欣. 从数字孪生到数字工程建模仿真迈入新时代[J]. 系统仿真学报, 2019, 31(3): 369-376.
ZHANG B, LI X, WAN X X. From digital twin to digital engineering modeling and simulation entering a new era[J]. Journal of System Simulation, 2019, 31(3): 369-376 (in Chinese)
[15]. 刘亚威. 管窥美军数字工程战略——迎接数字时代的转型[J]. 科技中国, 2018(3): 30-33.
LIU Y W. A glance at the digital engineering strategy of the us army: embracing the transformation of the digital era[J]. Scitech in China, 2018(3): 30-33 (in Chinese)
[16]. NORQUIST D L. DOD digital modernization strategy[R]. Washington, D.C: Office of prepublication and security review of Department of Defense, 2019.
[17]. BRAY W P. Digital systems engineering transformation strategy[R]. Washington, D.C: United States Navy and Marine Corps, 2020.
[18]. 王巍巍, 王乐. 美国数字工程战略发展分析[J]. 航空动力, 2022(5): 23-26.
WANG W W, WANG L. Analysis to the development of U.S. digital engineering strategy[J]. Aerospace Power, 2022(5): 23-26 (in Chinese)
[19]. 王林尧, 赵滟, 张仁杰. 数字工程研究综述[J]. 系统工程学报, 2023, 38(2): 265-274.
WANG L X, ZHAO Y, ZHANG R J. Review of digital engineering research[J]. Journal of System Engineering, 2023, 38(2): 265-274. (in Chinese).
[20]. 崔艳林, 王巍巍, 王乐. 美国数字工程战略实施途径[J]. 航空动力, 2021(4): 84-86.
CUI Y L, WANG W W, WANG L. US digital engineering implementation strategy[J]. Aerospace Power, 2021(4): 84-86. (in Chinese).
[21]. 王树博, 杜斌, 姜百汇. 美军数字工程的战略实施及当前能力分析[J]. 战术导弹技术, 2023(6): 22-26+46.
WANG S B, DU B, JIANG B H. Analysis of the US Army’s digital engineering strategy and formed capability[J]. Tactical Missile Technology,2023(6):22-26+46. (in Chinese).
[22]. 卫旭芳, 刘彬. 美军数字工程建设发展研究及启示[J]. 航空兵器, 2023, 30(3): 56-66.
WEI X F, LIU B. Research on the development of US military digital engineering and its enlightenment[J]. Aero Weaponry, 2023, 30(3): 56-66. (in Chinese).
[23]. RAMING M, SEDGWICK H, SMITH L, et al. A-10 implementing prognostics with the digital thread[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[24]. Vinoski J. Virtual Twins Are Helping The U.S. Military Keep Its Older Aircraft Flying [EB/OL]//Forbes. (2023-12-14)[2024-04-10]. https://www.forbes.com/sites/jimvinoski/2021/03/15/virtual-twins-are-helping-the-us-military-keep-its-older-aircraft-flying/?sh=2330613471b2.
[25]. JONES K, BRADLEY K K, BRYCE L H, et al. F-16 the inherent need for holistic structural integrity application and progress[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[26]. GRIFFIN M D, BALDWIN K, STANLEY J, et al. Digital engineering strategy [EB/OL]. Washington, DC, Department of Defense, 2018. (2018-11-12) [2024-04-10]. https://www.acq.osd.mil/se/docs/2018-DES.pdf.
[27]. International committee on aeronautical fatigue and structural integrity. national review of China[M]. Delft: The Netherlands, 2023.
[28]. 於之杰,郭玉佩,孙汉斌,等.先进材料及工艺的结构完整性研究进展[J/OL].航空学报,(2024-03-12)[2024-06-18]. http://kns.cnki.net/kcms/detail/11.1929.V.20240311.1849.012.html.
YU Z J, GUO Y P, SUN H B, et al. Recent progress in structural integrity of novel materials and advanced techniques[J]. Acta Aeronautica et Astronautica Sinica, (2024-03-12)[2024-06-18]. http://kns.cnki.net/kcms/detail/11.1929.V.20240311.1849.012.html. (in Chinese).
[29]. 田阔, 孙志勇, 李增聪. 面向结构静力试验监测的高精度数字孪生方法[J]. 航空学报, 2024, 45(7): 288-299.
TIAN K, SUN Z Y, LI Z C. High-precision digital twin method for structual static test monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 288-299. (in Chinese).
[30]. ESMAEILI H, RIZVI R. An accelerated strategy to characterize mechanical properties of polymer composites using the ensemble learning approach[J]. Computational Materials Science, 2023, 229: 112432.
[31]. ESMAEILI H, RIZVI R. Machine learning predictions and benchmarking of non-linear mechanical behavior of polymer composites[C]//Behavior and Mechanics of Multifunctional Materials XVII. Long Beach: SPIE, 2023: 128-134.
[32]. YI M, XUE M, CONG P, et al. Machine learning for predicting fatigue properties of additively manufactured materials[J]. Chinese Journal of Aeronautics, 2024, 37(4): 1-22.
[33]. WHELAN G F, GONG J, OLSON G B. Using digital twins to accelerate qualification of fatigue critical components[C] // Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[34]. HANSEN C K, WHELAN G F, HOCHHALTER J D. Interpretable machine learning for microstructure-dependent models of fatigue indicator parameters[J]. International Journal of Fatigue, 2024, 178: 108019.
[35]. KALIDINDI S R, BUZZY M, BOYCE B L, et al. Digital twins for materials[J]. Frontiers in Materials, 2022, 9: 818535.
[36]. COGSWELL D, PARAMATMUNI C, SCOTTI L, et al. Guidance for materials 4.0 to interact with a digital twin[J]. Data-Centric Engineering, 2022, 3: e21.
[37]. 张卫红, 唐长红. 航空航天装备的轻量化:挑战与未来[J]. 航空学报, 2024, 45(5): 9-15+4.
ZHANG W H, TANG C H. Lingweighting of aerospace and aeronautical equipment: challenges and perspectives[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 9-15+4. (in Chinese).
[38]. SHABANI P, LI L, LALIBERTE J, et al. High-fidelity simulation of low-velocity impact damage in fiber-reinforced composite laminates using integrated discrete and continuum damage models[J]. Composite Structures, 2023, 313: 116910.
[39]. LI L, SHABANI P, LALIBERTE J, et al. Virtual testing of low-velocity impact response of a composite laminate – from analytical to high-fidelity modelling[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[40]. GHIASVAND S, AIROLDI A, SALA G, et al. Meso-scale models for the interaction of damage modes in composites laminates[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[41]. GHIASVAND S, AIROLDI A, BETTINI P, et al. Analysis of residual stresses and interface damage propagation in hybrid composite/ metallic elements monitored through optical fiber sensors[J]. Aerospace Science and Technology, 2022, 129: 107373.
[42]. 司瑞, 陈勇. 民用飞机增材制造技术应用发展趋势[J]. 航空学报, 2024, 45(5): 78-97.
SI R, CHEN Y. Application trends of additive manufacturing technology for civil aircraft[J]. Acta Aeronautica et Astronatica Sinica, 2024, 45(5): 78-97. (in Chinese).
[43]. PHUA A, DAVIES C H J, DELANEY G W. A digital twin hierarchy for metal additive manufacturing[J]. Computers in Industry, 2022, 140: 103667.
[44]. RACHMAWATI S M, PUTRA M A P, LEE J M, et al. Digital twin-enabled 3D printer fault detection for smart additive manufacturing[J]. Engineering Applications of Artificial Intelligence, 2023, 124: 106430.
[45]. ODADA C A, BYIRINGIRO J B, MWEMA F M. Development of data-driven digital twin for real-time monitoring of FDM 3D printer[J]. Designs, 2021, 5, 0.
[46]. PARIPOORANAN C S, ABISHEK R, VIVEK D C, et al. An implementation of AR enabled digital twins for 3-D printing[C]//2020 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). Chennai, 2020: 155-160.
[47]. International committee on aeronautical fatigue and structural integrity. national review of Switzerland[M]. Delft: The Netherlands, 2023.
[48]. International committee on aeronautical fatigue and structural integrity. national review of France[M]. Delft: The Netherlands, 2023.
[49]. 聂珊珊, 聂小华. 多层级有限元模型数据库综合设计与应用[J]. 工程与试验, 2021, 61(4): 84-86.
NIE S S, NIE X H. Comprehensive design and application of multi-level finite element model database[J]. Engineering & Test, 2021, 61(4): 84-86. (in Chinese).
[50]. 王彬文, 聂小华, 万春华, 等. 全机静强度虚拟试验技术研究及应用[J]. 航空学报, 2022, 43(6): 171-183.
WANG B W, NIE X H, WAN C H, et al. Research and application of virtual test technology for static strength of the full scale aircraft structure[J]. Acta Aeronautica et Astronatica Sinica, 2022, 43(6): 171-183. (in Chinese).
[51]. PANETTIERI E, MONTEMURRO M, FANTERIA D, et al. Multi-scale least-weight design of a wing-box through a global/local modelling approach[J]. Journal of Optimization Theory and Applications, 2020, 187(3): 776-799.
[52]. IZZI M I, MONTEMURRO M, CATAPANO A, et al. Multi-scale optimisation of thin-walled structures by considering a global/local modelling approach[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2021, 235(2): 171-188.
[53]. IZZI M I, MONTEMURRO M, CATAPANO A, et al. A multi-scale two-level optimisation strategy integrating a global/local modelling approach for composite structures[J]. Composite Structures, 2020, 237: 111908.
[54]. NATIVIDAD G, TURK S, TSOI K, et al. Comparative strain survey of an aerospace structure using distributed fiber optic strain sensing technology[C]//The 9th Asia-Pacific Workshop on Structural Health Monitoring (9APWSHM). Cairns, 2023: 357-364
[55]. NATIVIDAD G, TURK S, TSOI K, et al. Distributed fibre optic sensing and adhesion strategies for strain evaluation of an aircraft structure[C]//AIAC 2023: 20th Australian International Aerospace Congress. Melbourne: Engineers Australia, 2023: 63-68.
[56]. KORTENIEMI T, PIRTOLA J, MIETTINEN A, et al. Development of national MRO capability for a basic trainer aircraft: flight and ground tests[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[57]. International committee on aeronautical fatigue and structural integrity. national review of Brazil[M]. Delft: The Netherlands, 2023.
[58]. DE SOUZA MELLO F M, PEREIRA J L J, GOMES G F. Multi-objective sensor placement optimization in helicopter main rotor blade considering the number of sensors and mode shape interpolation[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[59]. PEREIRA J L J, FRANCISCO M B, DE OLIVEIRA L A, et al. Multi-objective sensor placement optimization of helicopter rotor blade based on feature selection[J]. Mechanical Systems and Signal Processing, 2022, 180: 109466.
[60]. DUI H, LIU D, ZHANG L. Optimization of selecting strain measurement locations for distributed load recovery from strain measurements[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[61]. PAN S Z, ZHONG G Y, LIU X D. Research on structural damage identification methods for aircraft full scale fatigue test[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[62]. RAJIC N, BROOKS C, VAN DER VELDEN S, et al. A stress imaging capability for the digital enterprise[C]//AIAC 2023: 20th Australian International Aerospace Congress. Melbourne: Engineers Australia, 2023: 32-38
[63]. BROOKS C, RAJIC N. Automated visual tracking of crack growth in coupon and component level fatigue testing using thermoelastic stress analysis[J]. International Journal of Fatigue, 2022, 163: 107037.
[64]. MINIGHER P. Shape sensing and load reconstruction for static and dynamic applications[D]. Delft: Delft University of Technology, 2022.
[65]. MINIGHER P, GUNDLACH J, CASTRO S G P, et al. Shape sensing with sparse strain information for aerospace applications [DB/OL]. Engrxiv: 2546, 2022.
[66]. DUI H N, LIU D L, ZHANG Z X, et al. An inverse approach based on euclidean space for determining structural load distribution from strain measurements[C]//32nd congress of the international council of the aeronatical sciences(ICAS 2021). Shanghai, 2021.
[67]. 兑红娜, 刘栋梁, 张志贤, 等. 基于应变测量的结构载荷分布反演方法[J]. 航空学报, 2021, 42(5): 300-307.
DUI H N, LIU D L, ZHANG Z X, et al. Distributed load recovery approach based on strain measurements[J]. Acta Aeronautica et Astronatica Sinica, 2021, 42(5): 300-307. (in Chinese).
[68]. International committee on aeronautical fatigue and structural integrity. national review of Australia[M]. Delft: The Netherlands, 2023.
[69]. International committee on aeronautical fatigue and structural integrity. national review of Israel[M]. Delft: The Netherlands, 2023.
[70]. FREED Y. Determination of composite material finite width correction factors using machine learning strategies[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[71]. ZHENG J, WANG M, ZHANG L, et al. Rigid loading accelerates full-scale aircraft fatigue test[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[72]. 王彬文, 艾森, 张国凡, 等. 考虑不确定性的复合材料加筋壁板后屈曲分析模型验证方法[J]. 航空学报, 2020, 41(8): 280-287.
WANG B W, AI S, ZHANG G F, et al. validation method for post-bucking analysis model of stiffened composite panel considering uncertainties[J]. Acta Aeronautica et Astronatica Sinica, 2020, 41(8): 280-287. (in Chinese).
[73]. 吴斌, 王向明, 玄明昊, 等. 基于增材制造的新型战机结构创新[J]. 航空材料学报, 2021, 41(6): 1-12.
WU B, WANG X M, XUAN M H, et al. Structural innovation of new fighter based on additive manufacturing[J]. Journal of Aeronautical Materials, 2021, 41(6): 1-12. (in Chinese).
[74]. 雷鸣, 卢晓东, 霍幸莉. 飞机颤振试飞操纵面脉冲激励响应仿真方法研究[J]. 装备环境工程, 2020, 17(9): 48-53.
LEI M, LU X D, HUO X L. Simulation method of control surface impulse response of aircraft flutter flight test[J]. Equipment Environment Engineering, 2020, 17(9): 48-53. (in Chinese).
[75]. 寇宝智, 雷鸣, 卢晓东. 基于LPV模型的颤振试飞响应预测及激励优化[J]. 振动与冲击, 2022, 41(2): 103-112.
KOU B Z, LEI M, LU X D. Response prediction and excitation optimization of flight flutter tests based on a LPV model[J]. Equipment Environment Engineering, 2022, 41(2): 103-112. (in Chinese).
[76]. 王强, 赵勇, 倪孟龙. 高干涉量压合衬套强化铝合金孔结构的疲劳性能[J]. 机械工程材料, 2020, 44(7): 46-50.
WANG Q, ZHAO Y, NI M L. Fatigue properties of aluminum alloy hole structure strengthened by high interference fit bushing technique[J]. Materials for Mechanical Engineering, 2020, 44(7): 46-50. (in Chinese).
[77]. 张志贤, 张立新, 王凡. 压合衬套强化耳片的疲劳寿命评估[J]. 航空科学技术, 2022, 33(3): 97-105.
ZHANG Z X, ZHANG L X, WANG F. Evaluation of fatigue life of lug with cold expanded bushing[J]. Aeronautical Science & technology, 2022, 33(3): 97-105. (in Chinese).
[78]. 黄维娜, 黎方娟, 祁宏斌. 航空发动机数字工程初步研究与发展思考[J]. 航空学报, 2024, 45(5): 136-153.
HUANG W N, LI F J, QI H B. Preliminary investigation and throughs on aero-engine digital engineering development[J]. Aeronautica et Astronautica Sinica, 2024, 45(5): 136-153. (in Chinese).
[79]. 孙霄剑, 罗明强, 张驰, 等. 民用飞机预研论证权威真相源构建技术[J]. 航空学报, 2021, 42(2): 127-141.
SUN X J, LUO M Q, ZHANG C, et al. Construction technology of authoritative source of truth for civil aircraft pre-research[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 127-141. (in Chinese).
[80]. International committee on aeronautical fatigue and structural integrity. national review of UK[M]. Delft: The Netherlands, 2023.
[81]. HOOLE J, BOOKER J, COOPER J. Helicopter flight manoeuvre statistics via ADS-B: an initial investigation using the opensky network[J]. Engineering Proceedings, 2021, 13, 10.
[82]. HOOLE J, SARTOR P, BOOKER J D, et al. Landing gear ground manoeuvre statistics from automatic dependent surveillance-broadcast transponder data[J]. The Aeronautical Journal, 2021, 125(1293): 1942-1976.
[83]. International committee on aeronautical fatigue and structural integrity. national review of Italy[M]. Delft: The Netherlands, 2023.
[84]. LEONI J, ZINNARI F, VILLA E, et al. Flight regimes recognition in actual operating conditions: A functional data analysis approach[J]. Engineering Applications of Artificial Intelligence, 2022, 114: 105016.
[85]. CHEUNG C, BIONDIC C, HAMAIMOU Z A, et al. An approach to merging machine learning models in an ensemble for load estimation[C]//12th DST International Conference on Health and Usage Monitoring. Melbourne. 2021.
[86]. CHEUNG C, BIONDIC C, HAMAIMOU Z, et al. Modeling health status identification in a gas turbine system: three-class classification approaches[J]. Annual Conference of the PHM Society, 2021, 13(1).
[87]. ZHOU X, DZIENDZIKOWSKI M, DRAGAN K, et al. In-service load monitoring for an UAV digital twin[C]//Proceedings of the 11th European Workshop on Structural Health Monitoring (EWSHM 2024). Mayen: NDT.net, 2024.
[88]. International committee on aeronautical fatigue and structural integrity. national review of Canada[M]. Delft: The Netherlands, 2023.
[89]. LEE K J, LEE J R. Robotic-based laser ultrasonic non-destructive testing of 3D-printed continuous fiber reinforced flight control surface[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft. 2023.
[90]. LEE K J, JEON M S, LEE J R. Evaluation of manufacturing defects in 3D printed carbon fiber reinforced cylindrical composite structure based on laser ultrasonic testing[J]. NDT & E International, 2023, 135: 102802.
[91]. PANT S, GENEST M, IBARRA-CASTANEDO C, et al. Inspection of a helicopter blade using drone-based active thermography[C]//Thermosense: Thermal Infrared Applications XLV. Orlando: SPIE, 2023: 125360T-1-125360T-7.
[92]. MANDACHE C, DESNOYERS R, BOMBARDIER Y. Crack growth monitoring with structure-bonded thin and flexible coils[J]. Sensors, 2022, 22(24): 9958.
[93]. AMJAD K, LAMBERT P, MIDDLETON C A, et al. A thermal emissions-based real-time monitoring system for in situ detection of fatigue cracks[J]. Proceedings of the Royal Society A, 2022, 478(2266): 20210796.
[94]. MIDDLETON C A, AMJAD K, GREENE R J, et al. Industrial application of a low-cost structural health monitoring system in large-scale airframe tests[J]. The Journal of Strain Analysis for Engineering Design, 2024, 59(3): 218-225.
[95]. International committee on aeronautical fatigue and structural integrity. national review of Netherlands[M]. Delft: The Netherlands, 2023.
[96]. GROOTEMAN F. Multiple load path damage detection with optical fiber Bragg grating sensors[J]. Structural Health Monitoring, 2021, 20(1): 46-57.
[97]. MARINHO N R, LOENDERSLOOT R, GROOTEMAN F, et al. Impact identification method for structural health monitoring of stiffened composite panels using passive sensing systems[J]. Proceedings of the 11th European Workshop on Structural Health Monitoring (EWSHM 2024). Potsdam: NDT.net, 2024.
[98]. FERRI I S. Dynamic continuous fiber optical strain sensing for damage diagnosis on beam-like composite structures[D]. Delft: Delft University of Technology, 2022.
[99]. FALCETELLI F, DI SANTE R, TROIANI E. Strategies for embedding optical fiber sensors in additive manufacturing structures[C]//European Workshop on Structural Health Monitoring: Special Collection of 2020 Papers-Volume 2. Potsdam: Springer International Publishing, 2021: 362-371.
[100]. ELSHERKISI M, DUARTE MARTINEZ F, MASON-FLUCKE J, et al. Interaction of stress corrosion cracks in single crystals Ni-Base superalloys[J]. Engineering Fracture Mechanics, 2024, 298: 109899.
[101]. 董雷霆, 贺双新. 旋转部件SGBEM-FEM耦合热弹性断裂分析[J]. 北京航空航天大学学报, 2022, 48(9): 1702-1709.
DONG L T, HE S X. Sgbem-fem coupling for thermoelastic fracture mechanics analysis of rotational components[J] Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1702-1709 (in Chinese)
[102]. ZHOU X, HE S X, DONG L T. Real-time prediction of probabilistic crack growth with a helicopter component digital twin[J]. AIAA Journal, 2022, 60(4): 2555-2567.
[103]. ZHAO F B, ZHOU X, WANG C Y, et al. Setting adaptive inspection intervals in helicopter components, based on a digital twin[J]. AIAA Journal, 2023, 61(6): 2675-2688.
[104]. LIU H H, QI G, RENAUD G, et al. Application of the effective crack length method to model delamination of unidirectional composite laminates under mode II shear loadings[J]. Composites Part C: Open Access, 2023, 12: 100401.
[105]. LIU H H, QI G, KIM I Y. Comparative study of different damage modelling techniques for composite laminate interlaminar failures – a case study approach[C]//NAFEMS World Congress 2023. Tampa, 2023.
[106]. ORSATELLI J B, PAROISSIEN E, LACHAUD F, et al. Bonded flush repairs for aerospace composite structures: a review on modelling strategies and application to repairs optimization, reliability and durability[J]. Composite Structures, 2023, 304: 116338.
[107]. ORSATELLI J B, PAROISSIEN E, LACHAUD F, et al. Influence of modelling hypotheses on strength assessment of CFRP stepped repairs[J]. International Journal of Adhesion and Adhesives, 2024, 132: 103682.
[108]. MARQUES D, VANDEPITTE D, TITA V. Sensitivity and uncertainty analysis for structural health monitoring with crack propagation under random loads: a numerical framework in the frequency domain[J]. Fatigue & Fracture of Engineering Materials & Structures, 2023, 46(1): 137-152.
[109]. MARQUES D E T, VANDEPITTE D, TITA V. Damage detection and fatigue life estimation under random loads: A new structural health monitoring methodology in the frequency domain[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(6): 1622-1636.
[110]. 赵福斌, 周轩, 董雷霆. 基于数字孪生的飞机蒙皮裂纹智能检查维修策略[J]. 固体力学学报, 2021, 42(3): 277-286.
ZHAO F B, ZHOU X, DONG L T. An intelligent digital-twin-based strategy for the inspection and repair of aircraft skin cracks[J]. Chinese Journal of Solid Mechanics, 2021, 42(3): 277-286. (in Chinese)
[111]. ZHOU X, SBARUFATTI C, GIGLIO M, et al. Copula-based collaborative multi-structure damage diagnosis and prognosis for fleet maintenance digital twins[J]. AIAA Journal, 2023, 61(10): 4735-4740.
[112]. KHAN M, GENEST M. Human factor effects on nondestructive inspection of aerospace structures[C]//Proceeding of the 16th Asia Pacific Conference for Non-Destructive Testing (APCNDT). Melbourne, 2023.
[113]. PAES LEMES C A, ANDRéS ARBELO M, BARBOSA A F, et al. A probabilistic methodology for analysis of secondary cracks in riveted structures[C]. AIAA AVIATION Forum. San Diego, 2023.
[114]. RENAUD G, DIONNE é, LIAO M. Probabilistic lifing of a second oversize hole modification[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[115]. GENEST M, PANT S, KHAN M, et al. Probability of detection of automated tap testing for disbond detection in metallic honeycomb structures[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft. 2023.
[116]. LIAO M, RENAUD G, BOMBARDIER Y. Digital twin technology development and demonstration for aircraft structural life-cycle management[C]//NDE 4.0, Predictive Maintenance, Communication, and Energy Systems: The Digital Transformation of NDE, 2023: 16-26.
[117]. RENAUD G, LIAO M, BOMBARDIER Y. Demonstration of an airframe digital twin framework using a CF-188 full-scale component test[C]//ICAF 2019 – Structural Integrity in the Age of Additive Manufacturing. Cham: Springer International Publishing, 2020: 176-186.
[118]. BOMBARDIER Y, RENAUD G, LIAO M. Development and demonstration of damage tolerance airframe digital twin methods and tools[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[119]. GOMEZ-ESCALONILLA J, SANCHEZ F, VALENCIA O, et al. A holistic digital twin for service life extension programs[C]//Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. Delft, 2023.
[120]. ASILISKENDER A, PEIRó J, LEE K Y, et al. Predicting filling efficiency of composite resin injection repair[J]. Composites Part A: Applied Science and Manufacturing, 2023, 174: 107708.
[121]. CHEN J, WU W, REN Y, et al. Fatigue Crack evaluation with the guided wave–convolutional neural network ensemble and differential wavelet spectrogram[J]. Sensors, 2022, 22(1): 307.
[122]. LI T, LOMAZZI L, CADINI F, et al. Numerical simulation-aided particle filter-based damage prognosis using lamb waves[J]. Mechanical Systems and Signal Processing, 2022, 178: 109326.
[123]. 陶飞, 马昕, 胡天亮, 等. 数字孪生标准体系[J]. 计算机集成制造系统, 25(10): 2405-2418.
TAO F, MA X, HU, T L, et al. Research on digital twin standard system[J]. Computer Integrated Manufacturing Systems, 25(10): 2405-2418. (in Chinese).
[124]. International Organization for Standardization, International Electrotechnical Commission. Digital twin - concepts and terminology: ISO/IEC 30173:2023[S]. Geneva: International Organization for Standardization, 2023: 1-28.
[125]. International Organization for Standardization, International Electrotechnical Commission. Internet of things (IoT) - digital twin - use case: ISO/IEC TR 30172:2023[S]. Geneva, International Organization for Standardization, 2023: 1-171.
[126]. TAO F, SUN X, CHENG J, et al. MakeTwin: A reference architecture for digital twin software platform[J]. Chinese Journal of Aeronautics, 2024, 37(1): 1-18.
Outlines

/